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ABSTRACT: The search for tools to perform soil surveying faster and cheaper has led to the 
development of technological innovations such as remote sensing (RS) and the so-called spectral 
libraries in recent years. However, there are no studies which collate all the RS background to 
demonstrate how to use this technology for soil classification. The present study aims to de-
scribe a simple method of how to classify soils by the morphology of spectra associated with 
a quantitative view (400-2,500 nm). For this, we constructed three spectral libraries: (i) one for 
quantitative model performance; (ii) a second to function as the spectral patterns; and (iii) a third 
to serve as a validation stage. All samples had their chemical and granulometric attributes de-
termined by laboratory analysis and prediction models were created based on soil spectra. The 
system is based on seven steps summarized as follows: i) interpretation of the spectral curve 
intensity; ii) observation of the general shape of curves; iii) evaluation of absorption features; 
iv) comparison of spectral curves between the same profile horizons; v) quantification of soil 
attributes by spectral library models; vi) comparison of a pre-existent spectral library with un-
known profile spectra; vii) most probable soil classification. A soil cannot be classified from one 
spectral curve alone. The behavior between the horizons of a profile, however, was correlated 
with its classification. In fact, the validation showed 85 % accuracy between the Morphological 
Interpretation of Reflectance Spectrum (MIRS) method and the traditional classification, showing 
the importance and potential of a combination of descriptive and quantitative evaluations. 
Keywords: remote sensing, visible and near infrared, spectroscopy, spectral description, 
spectrum classification

Introduction

The importance of soils is global. The need 
for food, a better life and environmental quality are 
factors that suggest all communities should take a 
close look at soils. To identify the importance of soils 
in agriculture, soil maps can be used which show their 
spatial variation. All types of land use planning need a 
soil map. Undoubtedly, they require hard work and are 
time consuming. Thus, the need for faster and cheaper 
soil mapping methods has led the scientific community 
to search for technological innovations, and an essential 
prerequisite to soil mapping is soil classification. 

Remote sensing for soil classification has been 
studied since Stoner and Baumgardner (1981) applied 
this to American soils. Despite the great number of 
techniques that have led to an improvement in soil 
analysis, practical approaches have not emerged. Ben-
Dor et al. (2008) highlighted that there is a clear need for 
fusion between spectroscopy techniques and surveying. 

Soil classification implies the evaluation of all 
horizons and has posed certain difficulties. Spectral 
sensing had a great input with Stoner and Baumgardner 
(1981). However, they did not show, at that time, how 
to use the information to achieve classification. With 
the aim of analyzing spectra by shapes and features, 
Demattê (2002) identified, much later, the differences 
between tropical soils, that were subsequently used and 
ratified in case studies by Vasques et al. (2014), Soriano-

Disla et al. (2014) and Fiorio et al. (2014). But they still 
did not have a method that integrated quantitative and 
descriptive analysis. 

Although there is a hard descriptive background 
of spectra, researchers show that the information is 
dispersed. This makes it difficult for users to determine 
the importance of this interpretation. Sherman and 
Waite (1985) for example, stress the differences between 
goethite and hematite, while Madeira Netto (1996) 
delineates the shape of gibbsite. Despite the descriptive 
information as used by Bellinaso et al. (2010), quantitative 
studies play an important role, together with spectral 
library patterns, as pointed out by Shepherd and Walsh 
(2002) and Rizzo et al. (2014). But still, how can a user, 
with spectra in hand arrive at the classification of a soil? 
How can the observations be collated and integrated so 
as to to reach the main goal? There are no reports that 
focus on this aspect.

The present study aims to construct and describe 
a detailed method for morphological interpretation of 
spectra with a look at soil identification and classification. 
This will give support to the definition of Spectral 
Pedology, as proposed by Demattê and Terra (2014).

Materials and Methods

We established an interpretation strategy for 
spectral curves in order to provide the best correlation 
with soil classification of the spectra for all horizons 

1University of São Paulo/ESALQ – Dept. of Soil Science, C.P. 
09 − 13418-900 − Piracicaba, SP – Brazil.
2CATI/Secretary of Agriculture of São Paulo State, R. 
Campos Salles, 507 − 13400-200 − Piracicaba, SP – Brazil.
*Corresponding author <jamdemat@usp.br>

Edited by: Silvia del Carmen Imhof

Morphological Interpretation of Reflectance Spectrum (MIRS) using libraries looking 

José Alexandre Melo Demattê1*, Henrique Bellinaso2, Danilo Jefferson Romero1, Caio Troula Fongaro1

towards soil classification

Received November 04, 2013
Accepted June 25, 2014



510

Demattê et al. Reflectance Spectrum for soil evaluation

Sci. Agric. v.71, n.6, p.509-520, November/December 2014

from the same profile. For this, we propose the MIRS 
method (Morphological Interpretation of Reflectance 
Spectrum). The method is based on the premise that 
the ‘interpretation should be performed by a careful 
examination of morphological and quantitative 
information where the convergence of evidence can 
lead to the probable soil classification, being related to 
the experience of the interpreter in pedology and remote 
sensing’.

The system
The system is divided into seven steps as follows. 

The first step refers to the interpretation of the intensity 
of the spectral curve (Figure 1A). The second step is 
to observe the general shape of the curves along the 
complete spectrum (Figure 1B), such as ascendant, 
descendant or plane (Figure 1C). It is possible that a 
spectral curve has an ascendant aspect in a particular 
wavelength and then changes to plane or even 
descendant in another wavelength (Figure 1D). The third 
step consists of the evaluation of absorption features, 
usually promoted by mineralogy in specific wavelengths 
(Figure 1E); and are described in the literature (i.e., 
hematite, goethite, gibbsite, kaolinite, montmorilonite, 
water, organic matter and others).

The fourth step is the comparison of spectral 
curves between horizons in the same profile. One soil 
may present distinct spectral curves for each horizon 
while another may present similar spectral curves in the 
same profile (Figure 1F). Figures 2 and 3 show the main 
characteristic features of minerals likely to be observed 
in a spectral curve. 

The fifth step is based on a quantitative view of 
the spectral data. The user needs to prepare a spectral 
library with many samples to construct models which 
can quantify certain soil attributes such as cation 
exchange capacity (CEC), clay, organic matter and iron. 
In the present study we constructed this database with 
samples from Brazilian regions, with a total of 7,185 soil 
samples. The organic carbon (Corg), organic matter (OM) 
(g kg−1), P (mg kg−1), K, Ca, Mg, Al, H+Al (mmolc kg−1), 
the calculations of the Sum of Cations (SB), CEC, base 
saturation (V %), and aluminum saturation (m %) (Raij et 
al., 2001) were determined for all samples. Proportions 
of sand, and clay were also determined (Camargo et al., 
1986). Furthermore, the pH (in H2O and KCl), and Fe2O3, 
TiO2, MnO, Si2O4 and Al2O3 contents resulting from 
sulfuric acid digestion were calculated (Camargo et al., 
1986). The clay fraction activity, Ki and Kr rates, were 
also calculated. 

The color of dry samples was obtained from a 
chrometer using the Munsell color system. Since the 
color is determined from dry, not wet, samples and 
the chrometer determines hues in more detail than 
the conventional Munsell chromaticity diagram, the 
classification of soils was as follows: red soils were those 
with hues 2.5YR or redder, yellowish-red soils had hues 
2.5YR to 7.5YR, and yellow soils had hues 7.5YR or 

even more yellow. Spectral data were obtained in the 
laboratory with the FieldSpec Pro spectro-radiometer 
that has a spectral resolution of 1 nm for wavelengths 
from 350 to 1,100 nm and 2 nm for wavelengths from 
1,100 to 2,500 nm. For the collection of reflectance data, 
the samples were dried at 45 oC for 24 h. After drying, 
they were ground and sieved through 2-mm mesh. The 
reflectance of each sample was given by the average of 
100 readings from the sensor. The light collector was 
placed in a vertical position 8 cm from the sample. 
The source of light was a 50 W halogen light bulb. As a 
reference pattern, an espectralon white plate was used 
and considered to be the 100 % reflectance standard. 
Besides the spectral reflectance graphs, and in order to 
complement the identification of features, data were 
drawn from the second derivative of the Kubelka-Munk 
function (Scheinost et al., 1998; Sellitto et al., 2009). 
Using the Unscrambler 9.7 program we generated the 
models to quantify the soil attributes.

The sixth step is related to a comparison between 
unknown profile spectra with an already known 
databank. Again, the user needs to have a spectral 
library. But in this case, the spectral library is from 
complete profiles and spectra of horizons, and has to 
be classified traditionally. This step requires the user to 
compare the unknown profile with the known profile 
spectra in a careful investigation as stated in the previous 
steps. In our study we had 233 soil profiles described 
morphologically and classified traditionally, with the 
respective spectra. All profiles were evaluated and 
described morphologically (Lemos and Santos, 2013). 
Afterwards, they were classified up to the 3rd category 
level of the Brazilian System of Soil Classification 
(EMBRAPA, 2013) and 2nd category on the World 
Reference Base for soil resources (FAO, 2006). 

The seventh step is to, finally, collate all 
morphological and quantitative information, and observe 
the convergence of evidence which enables the most 
probable classification for the soil to be reached. The 
success of this method is related to the user’s experience 
in pedology and if mostly with spectroscopy. 

Validation stage: The spectral data of 13 unknown 
profiles was inserted into these steps to reach their 
classification. Soil samples were collected from very 
different sites in the cities of Araraquara (3); Piracicaba 
(4); Andradina (1) and Ipaussu (1), i.e., São Paulo State; 
Três Lagoas (3), State of Minas Gerais, and Maracajú (1), 
State of Mato Grosso do Sul, all in Brazil. The horizons of 
each profile were represented by letters in alphabetical 
order and generically called layers. For example, a profile 
containing horizons A, E, Bt and C would be labeled A, B, 
C and D, respectively. In the discussion, when referring 
to the spectral curve of the Bt horizon, it was referred 
to as layer C curve. Models to allow the determination 
of sand (g kg−1), clay (g kg−1), cation exchange capacity 
(CEC) (mmolc dm−3), V %, m %, aluminum (Al3+) (mmolc 
dm−3), Fe2O3 (g kg−1) and TiO2 (g kg−1) levels were 
evaluated. Also, the spectral information were analyzed 
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Figure 1 – Aspects of the qualitative assessment of spectral curves of soil profiles.
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by descriptive evaluation and inserted in the databases, 
observing the performance of the method, as compared 
with the traditional classification. 

Comparison with other systems
The results were also compared with studies 

from the literature such as Stoner and Baumgardner 
(1981) with curves type 1, 2, 3, 4 and 5 and a, b, c 
and d from Formaggio et al. (1996) (Figure 4). Stoner 
and Baumgardner (1981) divide types of curves into 
the following: 1-with predominance of organic matter, 
2-minimally altered by oxides, 3-affected by iron oxides, 
4-affected by organic matter, and 5-with predominance 
of iron oxides; Formaggio et al. (1996) identifies them as 
follows: a-spectral curves typically from A1 horizon of 
LR, b-spectral curve from “Ap” horizon of PV, c-spectral 

Figure 2 – Characteristic features of soil properties.

curve of A11 horizon of a Pachic Umbriorthox and 
d-spectral curve of the Bt2 horizon of a Podzolic Dark 
Red soil.

Results and Discussion

Thirteen profiles were classified by the MIRS 
method. Profile 3 shows curves (Figure 5A) of layers A, 
B and C with average intensity no higher than 0.15, and 
layer D, which had higher reflectance intensity, though 
not less than 0.20. The greatest reflectance intensity 
seen in layer D is explained by the sand content (Table 
1). All curves had a descending slope. The curves of lay-
ers A, B and C of profile 3 present softened features of 
kaolinite (2,200 nm) and gibbsite (2,265 nm). In addition, 
the concave feature is highlighted (850-900 nm), indicat-
ing the presence of iron oxides. The curve of layer D did 
not present a feature typical of gibbsite, but did have 
features of goethite (450 to 480 nm). The appearance of 
a goethite feature in layer D matches with the yellowish 
color of the soil as compared to the other samples (Ta-
ble 1). The increase in the amount of goethite promotes 
more yellowish colors.

The curves of profile 3 were classified as type 5 
and type a, or, even more specifically, those strongly 
affected by iron oxides. These standards are typical 
of soils developed from mafic rocks, such as basalt or 
dibase (Fontes and Carvalho Junior, 2005). Soils rich in 
crystalline iron have features with softened curves. This 
is due to the fact that these soils have opaque minerals 
in their formation (magnetite, ilmenite), which have 
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Figure 3 – Characteristic features of iron oxides in soil properties.

Table 1 – Chemical and granulometrycs profiles analysis.

Profiles1 Horiz. Depth

Granulometry Chemical analysis Color5

Sand Clay CEC4 V m Organic 
Matter Al

Hue Value Chroma
Ref.2 Pred.3 Ref. Pred. Ref. Pred. Ref. Pred. Ref. Pred. Ref. Pred. Ref. Pred.

    cm ------------------- g kg−1 ----------------------    -- mmolc kg−1 -- ---------------- % ------------------- --- mg kg−1 ---  mmolc kg−1  
P03A AP 0-30 150 214 710 729 80.6 58.0 49 38 2 6 33.0 23.7 1.0 1.8 3.9YR 3..5 2.4
P03B BA 30-55 100 158 750 748 55.4 61.2 62 35 0 4 22.0 22.1 0.0 2.6 3.2YR 3.8 2.8
P03C Bi 55-110 130 157 770 735 46.3 48.6 68 33 0 -1 17.0 20.1 0.0 -2.8 3.3YR 3.8 2.5
P03D C 110+ 320 305 430 873 69.1 92.0 12 46 62 11 9.0 22.5 13.0 3.0 7.8YR 4.6 2.8
P04A Ap 0-20 760 701 200 285 35.9 34.1 58 37 5 3 18.0 18.4 1.0 -0.5 6.6YR 4 2
P04B AB 20-45 760 674 200 321 36.0 29.6 44 27 0 8 15.0 16.2 0.0 0.0 6.3YR 4.1 2
P04C BW1 45-80 700 636 260 349 26.7 17.1 51 24 0 5 14.0 14.2 0.0 -5.2 5.8YR 4.3 2.3
P04D BW2 80 670 653 290 331 28.4 13.7 44 22 0 11 12.0 12.9 0.0 -0.4 5.8YR 4.3 2.8
P05A Ap 0-16 130 19 720 842 72.5 66.7 27 15 26 45 23.0 23.4 7.0 10.6 2.9YR 3.5 2.2
P05B Bw1 16-90 140 120 710 861 62.7 68.5 17 20 53 41 18.0 22.5 12.0 10.0 2.7YR 3.5 2.4
P05C Bw2 90-159 90 120 740 774 52.4 39.2 5 9 83 60 18.0 15.4 12.0 6.4 1.9YR 3.6 2.4
P05D Bw3 150+ 110 75 730 804   52.3 48.7 4 25 83 26 13.0 17.1 11.0 6.3   2.0YR 3.5 2.2
P10A Ap 0-30 720 685 120 234 20.4 25.4 51 44 9 24 8.0 9.6 1.0 1.8 9.6YR 5.7 2.5
P10B Bt1 30-60 620 681 220 260 39.4 27.4 75 51 0 13 8.0 9.4 0.0 2.1 8.0YR 5.6 3.9
P10C Bt2 60+ 660 702 180 226   34.3 18.7 88 43 0 27 7.0 6.2 0.0 3.2   8.0YR 5.9 4.1
1P03= Cambissolo Háplico Eutroférrico; text. m. arg.; P04= Latossolo Vermelho-Amarelo Eutrófico; text. média; P05= Latossolo Vermelho Distroférrico; text. m. 
arg.; álico; P10= Argissolo Amarelo Eutrófico; text. aren/média; A = 0-20 cm; B = 20-40 cm; C = 40-60 cm; D = 60-80 cm; 2Reference determined in laboratory; 
3Predicted by spectral models; 4 Cation-Exchange Capacity; 5Determined by colorimeter.

an extremely low reflectance intensity (Madeira Netto 
and Baptista, 2000). This is in agreement with an Fe2O3 

content greater than 200 g kg−1 in this profile (Table 2). 

Demattê and Garcia (1999) observed a behavior 
that is characteristic of less weathered soils, such as 
the Cambisols and Nitisols. The spectral curves of B 
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Figure 4 – Spectra of types of curves determined by (A) Stoner and Baungarnder (1981) and (B) Formaggio et al. (1996).

Table 2 – Soil mineralogical analysis.

Sample¹ Depth
Fe2O3

2 TiO2
2 Ki Kr2 ∆pH2 Clay ativ.2 Minaralogy3

Ref4 Pred5 Ref Pred Ref Pred2 Pred2 Ref Pred Ref Pred Ref Pred Hematite Goethite Gibbsite Kaolinite
  cm --------------------------- % ---------------------------                       mmolc kg−1          
P02C 50-115 5.8 14.9 0.58 1.8 1.7 0.9 1.3 1.3 0.5 -0.3 -0.4 97 68 yes yes yes yes
P03C 55-110 24.1 28.5 3.04 3.8 0.9 1.0 1.0 0.6 0.5 -0.2 -0.1 60 41 yes yes yes no
P04C 45-80 4.6 13.9 0.62 1.6 0.7 0.7 1.1 0.5 0.4 -0.1 -0.3 103 97 no yes yes yes
P05C 90-159 0.2 19.3 0.13 2.2 1.3 1.1 1.8 1.2 0.8 -0.9 -0.8 71 32 yes no no no
P06C 40+ 23.7 27.0 2.8 3.4 1.5 1.4 1.6 0.9 0.6 -0.2 -0.1 232 94 yes yes no yes
P07C 70-120 7.1 22.7 0.68 2.2 1.9 1.4 1.7 1.5 0.8 -0.5 -0.3 52 8 yes yes no yes
P08C 50-95 1.5 9.3 0.13 0.9 2.3 2.2 2.5 2.0 1.7 -0.6 -1.4 499 287 no yes no no
P09C 50-80 2.1 9.7 0.19 0.9 2.6 2.5 3.2 2.2 1.9 -0.9 -1.5 990 323 no no no no
P10C 60+ 1.9 9.4 0.16 1.3 1.6 1.3 1.8 1.3 1.0 -0.8 -0.8 191 135 no yes no yes
1 P02= Latossolo Vermelho Distrófico; text. arg.; P03 = Cambissolo Háplico Eutroférrico; text. m. arg.; P04 = Latossolo Vermelho-Amarelo Eutrófico; text. média 
P05= Latossolo Vermelho Distroférrico; text. m. arg.; álico; P06= Neossolo Litólico Distrófico; text. m. arg.; P07 = Nitossolo Vermelho Distroférrico; text. m. arg.; 
álico; P08 = Cambissolo Háplico Alítico; text. média; distróf.; P09= Neossolo Litólico Distrófico; text. aren.; álico; P10= Argissolo Amarelo Eutrófico; text. aren/
media; C = 40-60 cm; 2 Estimated from the models to estimate generated from the spectral data; 3 Detected by the presence or absence of spectral features; 4 

Reference determined data from laboratory analysis; 5 Predicted by the spectral models.
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Figure 5 – Qualitative description of the profiles 3(A) and 4 (B).

or C horizons of these soils have a greater reflectance 
intensity than surface horizons. Stoner and Baumgardner 
(1981) classified curves coming from minimally altered 
(weathered) soils as type 2. The greater reflectance 
intensity agrees with Demattê and Garcia (1999). The 
intensity behavior of curve D from profile 3 was adjusted 

to the characteristics described by these authors. The 
absence of gibbsite (2,265 nm) and the apearance of 
goethite (450-480 nm) indicated that layer D belongs to 
a less weathered horizon. Added to the observation of 
spectral library graphs, the characteristics described, 
indicate that profile 3 is a Cambisol.
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Figure 6 – Qualitative description of the profiles 5 (A) and 10 (B).

Profile 4 (Figure 5B) presented very similar curves 
between horizons, with reflectance intensities varying 
between 0.2 and 0.25. This result is expected since 
results from the determined values of texture and Fe2O3 
are high (Tables 1 and 2). With a slope standard slightly 
ascending. Gibbsite and goethite features were detected. 
The appearance of the goethite feature matched with 

the more yellowish colors found by the colorimetric 
determination (Table 1). Again, a reduction in the concave 
feature due to iron oxides (850-900 nm) was observed, 
promoted by the greater content of O.M.. Based on this 
evidence, profile 4 was classified as a Ferralsol. 

Profile 5 (Figure 6A) presented very similar spectral 
curves between horizons, with average albedo values 
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around 0.1. Very low reflectance values are caused by 
two factors: high clay and iron contents (mainly opaque 
minerals, such as magnetite and ilmenite) (Stoner and 
Baumgardner, 1981). The clay content in the layers (Table 
1) confirms the assertion of these authors. However, 
the Fe2O3 content obtained was low (Table 2), whereas 
the predicted value matched the authors’ observation, 
indicating that the predicted result is more reliable than 
the one given by the reference in this case. Other profiles 
described in the region (Bellinaso et al., 2010) presented 
the same spectral characteristics as profile 5, with Fe2O3 
content similar to those predicted for this profile. Curves 
from profile 5 had a standard plane slope, kaolinite and 
iron oxide features. A characteristic shape between 580 
and 850 nm (Figure 6A) was observed in this profile that 
is usually found in ferric soils. 

Figure 6A demonstrates the abundant presence 
of hematite in profile 5, as calculated by the second 
derivative of the Kubelka-Munk function. The second 
derivative for spectral data is able to show the amounts 
of goethite and hematite present in a particular soil 
(Sellitto et al., 2009). The greater presence of hematite 
matches with the colorimetric determination (Table 1), 
with strongly reddish colors in the soil. All curves from 
the profiles were classified as type 5 and type a. Thus, 
profile 5 was classified as a Ferric Dystric – Red Fer-
ralsol.

Profile 10 (Figure 6B) presented high albedo 
curves, with maximum values of 0.6. Although layer 
A presents a lower clay content than the others (Table 
1), the albedo values were close to 1850 nm. Soils with 
horizons containing more clay developed over argillites 
or siltites with low iron content, can present albedos 
similar to those with more sandy horizons (Demattê et 
al., 2004; Fontes and Carvalho Junior, 2005). However, 
the greater sand content in layer A, as compared to 
layers B and C (Table 1), led to a greater intensity in 
relation to the rest of the measurements starting from 
1,850 nm. This standard is characteristic of Lixisols, and 
agrees with the finding of Demattê (2002).

The curves of profile 10 had an ascending slope. 
Only the curves in layers B and C presented slope 
alterations after 1,900 nm. Starting from this spectral 
layer, the slope was descending (Figure 6B). The second 
derivative (Figure 6B) demonstrates a greater amount 
of goethite (450 nm region) in relation to hematite, 
which is the source of the yellowish color of the soil, 
confirmed by the colorimetric data, which showed a 
8.0YR hue. Fontes and Carvalho Junior (2005) reported 
that hematite has greater pigmentation power than 
goethite. Curve A from profile 10 was classified as type 
4 and type b and curves B and C as type 2 and type d. As 
we observed, in the same profile there can be different 
spectra classifications. Thus, it is not common that a soil 
class has only one morphological spectral class. This 
underlines the importance of evaluating the curve of 
each horizon and afterwards put all together to take a 
decision.

The use of remote sensing techniques (qualitative 
and quantitative) yielded an 85 % level of accuracy 
as compared with traditional system. This rate 
increased to 92 % when analytical data from routine 
laboratory analysis were included. While verifying the 
classifications, the 15 % error was due to differences 
in classifying profiles 7 and 13 (Table 3). For profile 
7, no classification was found when remote sensing 
techniques were used. However, two possible classes 
were indicated, and the classification most likely to be 
correct (Nitisol) matches with the real classification 
of the profile. The similarity between the spectral 
characteristics of Ferralsol and Nitisol soils contributes 
to the error. However, the sharper observation of the 
gibbsite feature (2265 nm) can be a differentiating factor 
between the two classes. According to this, the spectral 
library showed that the gibbsite feature (2265 nm) is 
sharper in Ferralsols than in Nitisols.

The difference in the classification of Profile 13 
was due to different clay contents (Table 1), as was seen 
when the correct reference data were used. While the 
reference analysis pointed to a sandy texture for the 
profile (120 g kg−1), the predicted analysis pointed to 300 
g kg−1. 

There was a large increase in the number of 
classification errors in the third level category, where 
only remote sensing techniques were used (Table 4). 
This was due to prediction errors related to chemical 
attributes such as V % and Al3+. The models used for 
the prediction of profile attributes have shown low or 
variable data for the estimation capacity for chemical 
attributes. The development of regional spectral libraries 
may contribute to the improvement of chemical attribute 
predictions, which would increase the efficiency of 
classifications.

As for the iron characteristic, only profile 1 had 
a classification difference (Tables 3 and 4). However, 
this cannot actually be considered as an error, because 
of the lack of Fe2O3 reference data for this profile. The 
models used to estimate Fe2O3 have shown an excellent 
predictive capacity (Nanni and Demattê, 2006). Sellitto 
et al. (2009) demonstrated how spectroscopy and remote 
sensing techniques can be accurate in determining iron 
oxides and Fe2O3. In fact, several authors have indicated 
a very close correlation between Fe2O3 and reflectance 
(Brown et al., 2006; Islam et al., 2003; Moron and 
Cozzolino, 2003).

Figure 7 shows other examples on how MIRS can 
assist in soil classification. Figure 7A shows a Ferralsol. 
This soil is characterized by the presence of hematite, 
which can be observed by the wide concave shape 
around 450 nm, as it can be seen on the derivative. This 
soil is very weathered and shows presence of gibbsite, 
with a feature in 2,265 nm. Kaolinite in 2200 nm is also 
present. Features in 1,400 and 1,900 nm are not well 
defined because the soil has opaque minerals such as 
magnetite and ilmenite. The shape is usually plane in 
general, with low reflectance intensity depending on the 
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quantity of iron and clay. When we observe all the hori-
zons together, we see few differences between them. In 
fact, traditional soil classification also does not see dif-
ferences between horizons, except the A horizon because 
of the higher organic matter. When these soils have very 

Table 3 – Comparison between real soil classification and the classifications using remote sensing techniques.

Profile Region
Traditional 

classification (FAO, 
2006)

Traditional classification
(EMBRAPA, 2013)

Classification by remote sensing

Using Predicted attributes 1 Using Reference attributes2

1 Andradina - SP Lixisols Haplic – 
Red

Argissolo Vermelho Eutrófico; 
text. arenosa/média

Argissolo Vermelho Distroférrico; 
text. média/arg.

Argissolo Vermelho Eutrófico; text. 
aren/média 

2 Araraquara - SP Ferralsols Dystric 
– Red

Latossolo Vermelho Distrófico; 
text. arg.

Latossolo Vermelho-Amarelo 
Distrófico; text. arg. 

Latossolo Vermelho-Amarelo 
Distrófico; text. arg. 

3 Araraquara - SP Cambisols Haplic 
Eutrofic

Cambissolo Háplico Eutroférrico; 
text. m. arg.

Cambissolo Haplico Distroférrico; 
text. m. arg. 

Cambissolo Háplico Eutroférrico; text. 
m. arg. 

4 Araraquara - SP Ferralsol Eutric – 
Yellowish red

Latossolo Vermelho-Amarelo 
Eutrófico; text. média

Latossolo Vermelho-Amarelo 
Distrófico; text. média 

Latossolo Vermelho-Amarelo Eutrófico; 
text. média 

5 Ipaussu - SP Ferralsol Ferric 
Dystric – Red

Latossolo Vermelho 
Distroférrico; text. m. arg.; álico

Latossolo Vermelho Distroférrico; 
text. m. arg.; álico 

Latossolo Vermelho Distrófico; text. 
m. arg.; álico

6 Maracajú - MS Leptosol Lithic 
Dystric – Very clay

Neossolo Litólico Distrófico; 
text. m. arg.

Neossolo Litólico Distrófico; text. 
m. arg. 

Neossolo Litólico Eutrófico; text. m. 
arg. 

7 Piracicaba - SP Nitosol Alic Nitossolo Vermelho Distroférrico; 
text. m. arg.; álico

Nitossolo Vermelho Distroférrico; 
text. m. arg. Ou Latossolo 
Vermelho Distroférrico

Nitossolo Vermelho Distrófico; text. 
m. arg.; álico ou Latossolo Vermelho 
Distrófico 

8 Piracicaba - SP Cambisols Aluminic Cambissolo Háplico Alítico; text. 
média; distróf.

Cambissolo Háplico Eutrófico; text. 
média 

Cambissolo Háplico Alítico; text. 
média; distróf. 

9 Piracicaba - SP Leptosols Lithic 
Dystric – Sandy

Neossolo Litólico Distrófico; 
text. aren.; álico

Neossolo Litólico Eutrófico; text. 
média 

Neossolo Litólico Distrófico; text. 
aren.; álico

10 Piracicaba - SP Lixisols Haplic – 
Yellow

Argissolo Amarelo Eutrófico; 
text. aren/média

 Argissolo Amarelo Distrófico; text. 
média/média 

Argissolo Amarelo Eutrófico; text. 
aren./média 

11 Três lagoas - MS Gleysol Haplic Gleissolo Háplico Tb Eutrófico; 
text. média

Gleissolo Háplico Distrófico; text.
média Gleissolo Háplico Eutrófico; text.média 

12 Três lagoas - MS Ferrasol Dystric – 
Yellow

Latossolo Amarelo Distrófico; 
text. arg; álico

Latossolo Vermelho-Amarelo 
Distrófico; text. arg. 

Latossolo Vermelho-Amarelo 
Distrófico; text. arg; álico

13 Três lagoas - MS Arenosol Haplic Neossolo Quartzarênico Órtico; 
text. aren.; distróf.; álico

Latossolo Vermelho-Amarelo 
Distrófico; text. média 

Neossolo Quartzarênico Distrófico 
Órtico; text. aren.; distróf.; álico 

1Classification using the qualitative interpretation of the spectral curves predicted by using data and models to estimate; 2Classification using the qualitative 
interpretation of the spectral curves and data analysis using routine laboratory.

Table 4 – Accuracy rate of classification using remote sensing 
techniques.

Number of 
profiles

% agreement for 
first level category

% agreement 
for second level 

category

% agreement third 
level category

no % no % no %
Exclusively Using Remote Sensing Techniques 

(attributes predicted)
13 11 85 11 85 6 46

Using Remote Sensing Techniques and Routine Analysis 
(reference attributes)

13   12   92   12   92   12   92

high iron content, sometimes even the A horizon cannot 
be depicted, as observed by Demattê et al. (2004). 

The spectra of all horizons maintain the parallelism 
and do not cross each other, indicating little difference be-
tween clay contents. In fact, Ferralsols have little difference 
between clay contents at whatever depth. Thus, if a user 
observes spectral curves of a profile and sees this infor-
mation, he can find the probable soil, and, if he wants to 
indicate the texture, just follows the relevant quantitative 
step. Figure 7B shows a Lixisol. The main difference is that 
the A horizon maintains an ascendant tendency from 400 
to 2500 nm. The B horizon, when reaching about 1,900 
nm, starts a descendant tendency related to the lower clay 
content. In fact, quartz, mostly present in the sand fraction, 
yields a high reflectance in SWIR, which leads to a higher 
intensity for the A horizon and a lower intensity for the B 
horizon. This explains the gradient of clay in the Lixisols. 
Observe that the E horizon, very sandy, has a greater inten-
sity than both A and B horizons. 
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Figure 7C shows a Gleysol. This soil presents a high 
amount of montmorillonite which gives a strong feature 
at 1900 nm in the B horizon and a specific feature at 2200 
nm. The low hematite content is observed by the absence 
of concavity around 900 nm. Horizon A is hiding the min-
eralogy features due to the high organic matter content. 
Figure 7D shows the descriptive differences between 
hematite (red color) with a wide concave shape and low 

Figure 7 – Spectral curves and features from (A) Ferralsol; (B) Lixisol; 
(C) Gleisol; and (D) Weathering features.

reflectance intensity, in contrast with the goethite (yellow 
color) with a narrow concave shape and higher reflec-
tance intensity. This is observed for mafic rocks (basalt) at 
the weathering stage. 

Although the difference between predicted and ref-
erence values is more evident, the classification of soil 
texture has been shown to be fairly accurate (Table 4). In 
fact, the quantification of clay has, by and large shown 
good results (Soriano-Disla et al., 2014), which ratifies its 
importance in the MIRS system. The prediction errors fit 
into the variation range of contents for each textural class, 
leading to good results. The prediction model used for the 
profile attribute estimates has a good performance regard-
ing the quantification of clay and sand also by other au-
thors such as Nanni and Demattê (2006). In fact the need 
for spectral libraries to achieve models for quantification 
of soil attributes is important for the MIRS system.

The quantitative information gives a different per-
spective to the descriptive. It gives a number of the con-
tent of the attribute, which reveals punctual information 
of the sample. On the other hand, the entire spectrum 
(400-2,500 nm), observed by the perspective of the entire 
spectrum, reveals the information in its entirety, which 
includes the combination of all constituents. Thus, the de-
scriptive information is absolutely important because it 
allows the user to ‘see’ the result of this combination and 
compare it to a known sample. A single number of quanti-
fication does not allow this view. Another important con-
sideration is the comparison between spectra from all ho-
rizons at the same time. Ferralsols show few differences 
between spectra along horizons, but Lixisols have evident 
differences. This can be seen from clay quantification. 
On the other hand, can we see a clay difference in a Red 
Lixisol (with hematite) when compared to a Yellow Lixi-
sol (with goethite)? Yes, by spectra shapes as indicated in 
this manuscript. Another example is if we have traditional 
mineralogy information of a soil indicating the presence 
of gibbsite, can we know the soil class? Yes, if we have the 
entire spectra, we can detect the feature of gibbsite and 
see the color (by shapes showing a presence of hematite or 
goethite), from the entire shape of the spectra from all ho-
rizons and have a preliminary idea of the soil class. This 
shows the importance and potential of the combination of 
descriptive and quantitative evaluation of spectra from a 
profile looking at soil classification. 

Conclusions

The individual interpretation of curves does 
not allow for accurate indication of soil class. The 
combination of morphological and quantitative remote 
sensing techniques has proved to be an important tool 
for classifying soils. 

The simultaneous interpretation of the spectral 
behavior of all horizons from the same profile as 
proposed by the Morphological Interpretation of 
Reflectance Spectrum (MIRS), presents considerable 
correlation with its classification.
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