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ABSTRACT

Soil mapping has been identified as key to environmental issues. The determination of soil attributes to achieve
the best decision making on land use planning is crucial. The use of remote sensing (satellite images) can
improve understanding of the surface, since it collects a spectral reflectance fingerprint related to soil properties.
However, methodologies still gather spatially fragmented information on bare soil in a single image; thus, there
is still room to improve information as a continuous surface. This work has the purpose of developing a pro-
cedure using multi-temporal satellite image information, aiming to construct a single synthetic image which
would represent soils. The work was carried out in the state of Sao Paulo, Brazil, on a site covering 14,614 km?.
The procedure, designated as Geospatial Soil Sensing System (GEOS3), is based on the following steps: a)
creation of a database with Landsat 5 legacy data.; b) filtering of the database to provide images only from the
dry season in the region; c) insertion of a set of rules into the system to filter other objects besides soils; d) Each
bare soil occurrence for each location along the time-series was used to calculate a Temporal Synthetic Spectral
Reflectance (TESS) of the soil surface; e) aggregation of all TESS composes the Synthetic Soil Image (SYSD); f)
quantitative and qualitative validation of the SYSI through the correlation between laboratory and TESS, soil line
assessment and the principal component analysis (PCA). GEOS3 was able to provide the best representative
reflectance of soils for each band during the historical period. Thus, TESS is not the ‘true’ but a synthetic spectral
reflectance. The canonical correlation between laboratory and satellite data reached 0.93. A value of up to 0.88
in the Pearson's correlation between laboratory and TESS was also achieved. In a single scene, only 0.5% of area
was available as isolated bare soil for spatial analysis. However, SYSI reached 68%. Considering only the su-
garcane agricultural areas, a value of 92% was achieved. Our study indicates that a multi-temporal data mining
procedure can retrieve soil surface representation. The key to the results was calculating the median spectral
reflectance from the bare soil pixels along the period of the time series. GEOS3 products can aid soil evaluation
by assisting in digital soil mapping, soil security, precision agriculture, soil attribute quantification, soil con-
servation, environment monitoring and soil sample allocation, among others.

1. Introduction

However, sustainable use of agricultural lands requires knowledge of
soil spatial variation to assist in land management. This brings us to the

Soil provides several ecosystem services, playing a major role in
food production, climate regulation and water and element cycles.
Despite its environmental services, soil is one of the most impacted
natural resources on the planet (Lal, 2004). Moreover, the world is
undergoing climatic changes caused by anthropogenic activities that, in
many cases, are linked to soil degradation (Kalnay and Cai, 2003). With
world population growth being projected to reach 9.6-12.3 billion
people by 2100 (Gerland et al., 2014), there is pressure to expand
agricultural areas and consequently increase food production.

* Corresponding author.

recent concept of soil security, which involves its mapping and under-
standing to provide quality food, fresh water as to maintain climate and
environmental quality (McBratney et al., 2014). As such, the extensive
unmapped areas raise concerns, requiring the development and appli-
cation of new tools for soil mapping (Nolasco de Carvalho et al., 2015).
The use of digital approaches for soil mapping (McBratney et al., 2003)
enhances the applicability of soil assessments (Hengl et al., 2015).
Therefore, remote sensing (RS) has gained great relevance in spatial
modeling and digital soil mapping, due to the strong background in
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Fig. 1. Study site in the state of Sao Paulo, southeastern Brazil.

interactions between soil and energy (Stenberg et al., 2010). In addi-
tion, studies that correlate satellites with ground sensors are important
to the application of remote sensing data in spatial variability of soil
(Nanni et al., 2012).

One of the benefits of satellite images is to obtain soil information
from large areas (Ben-Dor et al., 2009). However, an image obtained
from a single period will not have bare soil for the entire area, which
hinders evaluation as a continuous surface. In this case, there are two
ways to analyze soils in an image; in spots or spatially. Spot information
is related to a single pixel, whereas spatial information is related to
bodies formed by contiguous pixels with similar characteristics. If a
pedologist or another user is only interested in a specific bare soil pixel
for a spot analysis, a single representative image is enough to provide
soil surface reflectance. However, if the user wishes to understand the
soil as a continuous surface, for spatial modeling, digital soil mapping
or other uses, a different approach is required.

The use of satellite images in digital soil mapping is limited by the
high vegetation cover of landscapes (Dobos et al., 2006). This topic
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raises the question: “How can these influences be reduced to acquire
topsoil spectral reflectance?” Papers, such as Dematte et al. (2009) have
sought to answer this question by developing methods to detect bare
soil in a single image. However, a second important question remains -
“How can the soil be expressed as a continuous surface, since it is
usually covered by vegetation?” This led to the necessity for a second
strategy using time series images, which encouraged different ap-
proaches, as in the work of Nanni and Dematté (2006), among others
(Diek et al., 2017; Rogge et al., 2018).

Continuous representation enables users to apply bare soil satellite
composites to their specific purposes, such as mapping clay content,
organic matter, cation exchangeable capacity and salinity, or for as-
sistance in soil management zones and precision agriculture. Thus, Diek
et al. (2016) proposed the use of a multi-temporal composite image
from the Airborne Prism Experiment (APEX) for soil monitoring. Based
on stacked images, the authors doubled the amount of bare soil pixels
and improved spatial representation of the soil surface. Miiller et al.
(2016) presented a method to derive high-resolution topsoil texture
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Fig. 2. a) Standard reflectance spectra patterns for straw, vegetation, clayey and sandy soils with respective shading of multispectral Landsat 5 Thematic Mapper. b)
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georeferenced points. H,O and OH ™~ are water and hydroxyl absorption groups. SYSI: synthetic soil image. The sat and lab in figure b are, respectively, satellite (SYSI)

and laboratory (convolved) acronyms for their soil spectral reflectance.

from 28 images of the Advanced Space-borne Thermal Emission and
Reflection Radiometer (ASTER), while Shabou et al. (2015) produced a
clay content map over the Kairouan plain (Tunisia) based on a time
series of Landsat images.

Furthermore, recent works have proposed novel methodologies to
generate bare soil composites based on satellite time series (Diek et al.,
2017; Rogge et al., 2018). Alterations in topsoil organic matter were
assessed using remote sensing techniques (Pan et al., 2004), which have
also been used to assist in land use planning (Marsh, 2010). Although
recent studies conducted in temperate climate regions have had the
same goal of producing a soil surface composite, there is still room to
improve the methods, especially for tropical regions (Rogge et al.,
2018). This indicates the necessity to continue improving strategies for
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bare soil detection, collaborating with the community in several
aspects.

Thus, this study aims to develop a bare soil composite method by
performing data mining of satellite time series, which could represent
soil reflectance on an unfragmented spatially continuous surface. Our
hypothesis is that the soil surface has been exposed to satellite mea-
surements at least once and each occurrence could therefore be ag-
gregated into a single representation. The method proposed here is
denominated Geospatial Soil Sensing System (GEOS3). This product
may be of assistance to users in several areas, such as soil surveys, DSM,
quantification of soil attributes (clay content, organic carbon, calcium
carbonates, etc.), soil monitoring, precision agriculture and any scien-
tific area that requires topsoil information.
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Fig. 3. Spectral reflectance for levels of mixtures of a sandy soil with sugarcane green leaves (a), sugarcane straw (b), and sugarcane straw ash (c). The figures d e and
f are the respective Normalized Difference Vegetation Index (NDVI) and Normalized Burn Ratio 2 (NBR2) of the spectral reflectance from figures a, b and c. The

spectral reflectance is equivalent to Landsat 5 TM bands.

2. Material and methods
2.1. Study site

The study site covers an area of 14,614km? in the state of Sdo
Paulo, southeastern Brazil (Fig. 1). The climate is classified as humid
subtropical (Cwa) on the Koppen classification with dry winters and hot
summers (Alvares et al., 2013). The dry and wet seasons correspond to
April-September and October-March, respectively. The geology is
mainly composed of sandstone and basalt (Perrotta et al., 2005). The
soil classes (IUSS, 2015) are primarily Ferralsols, Arenosols, Alfisols,
Lixisols and Nitisols. Quartz is the main mineral of the sandy soils,
while kaolinite and oxide (low-activity clay), with different iron con-
tents, dominate the clayey soils. The relief is diversified, and the main
crops are sugarcane, pasture, eucalyptus and citrus.

2.2. Field sampling and topsoil laboratory spectral measurements

A total of 919 points were allocated within the study site, using
the catena sampling method. This technique is used to detect soil-
landscape variations based on relief and geology, increasing the
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representativeness of soils within the area (Sommer and Schlichting,
1997). Soil samples were collected using an auger at 0-20 cm depth. In
the laboratory, the samples were dried (45 °C, 24 h), ground and sieved
through 2-mm mesh. Spectra were acquired in the range from 350 to
2500 nm, i.e. visible, near and shortwave infrared (VIS-NIR-SWIR).
Samples were conditioned in Petri dishes, 8 cm from a sensor and 35 cm
from a halogen lamp (50 W). Measurements were performed with a
FieldSpec 3 sensor (Analytical Spectral Devices, Boulder, CO, USA), set
under laboratory conditions. A spectralon plate was used as white re-
ference. The spectra obtained in the laboratory were convolved to the
Landsat Thematic Mapper (TM) spectral bands using a Gaussian func-
tion.

2.3. Empirical and theoretical bases of spectral reflectance patterns

The understanding of satellite information is supported by field
reference data. The laboratory spectral reflectance patterns help un-
derstand the main differences between different landscape objects ob-
served in satellite images (Fig. 2a). This section was added to the cur-
rent paper as we have previously performed a reflectance spectroscopy
experiment to improve understanding of spectral targets, proposing
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potential thresholds for masking soil in satellite images. From the re-
sults, it could be observed that soil reflectance is highly related to soil
particle size distribution (Fig. 2a). Clayey soils have flat spectral be-
havior in contrast to sandy soils, varying similarly as intensity in-
creases. As the soil granulometry class changes from clayey to sandy,
soil reflectance increases its intensity, mainly in band (B) 5
(1550-1750 nm) and B7 (2080-2350 nm). There are significant differ-
ences between these two kinds of soil in absorption and reflectance
intensities at SWIR range, i.e. between 1400 and 2500 nm (Fig. 2a), and
in agreement with Nanni and Dematté (2006), for both laboratory
spectra and Landsat 5 TM images.

For a standard vegetation spectrum, energy absorption occurs in B1
(450-520 nm) and B3 (630-690 nm) due to photosynthetic activities
(Fig. 2a). Moreover, higher reflection in B4 (760-900 nm) can also be
observed due to leaf structure (spongy mesophylls). There is also an
absorption peak in B7 (2080-2350 nm) related to cellulose and lignin
(Jensen, 2013), which is similar for straw. These features are important
to differentiate soils from vegetation, which can be highlighted using
spectral indices. The reflectance spectra of straw are rather similar to
that observed for senescent vegetation and, in some cases, for sandy
soils. An important feature of soils is the absorption peak between 2100
and 2200nm (Fig. 2a), where the lignin band is present for plant
structures (straw and green vegetation) and the kaolinite peak appears
for soils (Pizarro et al., 2001).

We have also performed a previous reflectance spectroscopy ex-
periment on the most common targets for agricultural areas. This pre-
liminary experiment was important as the multispectral patterns of
sandy soils demonstrated as being similar to straw cover, presenting
only relative differences in reflectance (Fig. 3). Increasing levels of fi-
nely ground green vegetation, straw, and burned straw (ash) were ap-
plied over the soil surface (see Dematté et al., 2016 for details) and
spectral measurements (400-2500 nm) were acquired for each treat-
ment using the same laboratory settings explained in the previous
subsection, with the reflectance spectra being subsequently convolved
to Landsat 5 TM bands. Coverage gradients ranged from bare soil to
complete coverage with the residues. The quantification of the relative
coverage was performed using supervised classification of images ac-
quired from a digital camera (Fig. 3).

The laboratory experiment shows that sandy soils and straw have
similar patterns for the Landsat 5 TM bands (Fig. 3). This behavior can
confuse the targets in multi-temporal satellite images, since the latter
cannot be discriminated by the lignin and cellulose absorptions at
2100 nm and 2200 nm, as shown in Fig. 2a. On the other hand, the
relative differences between the multispectral bands can be used to
differentiate vegetative structures from soils. Therefore, the dis-
crimination between straw and sandy soil can be performed through the
difference between intensities of B5 (1550-1750nm) and B7
(2080-2350 nm) (Fig. 3b).

The use of spectral indices, which are univariate values calculated
from multiple band reflectance, highlights the differences between
spectral targets (Fig. 3d, e, f). Vegetation is quite different from soils
regarding the Normalized Difference Vegetation Index (NDVI, Fig. 3d).
The soil samples (100% bare soil) have a very low NDVI value (0.19),
and the increment of green leaves increases the NDVI. On the other
hand, the increment of straw on the soil surface decreases the NDVI
values, which makes it difficult to use only the NDVI for spectral dif-
ferentiation. Thus, the addition of an ancillary spectral index (Nor-
malized Burn Ratio 2, NBR2) enables the differentiation of soils from
straw (Fig. 3e).

The differentiation of straw from soil is a difficult task for remote
soil sensing in tropical regions. When 100% soil is present in the FOV of
the laboratory sensor, NDVI and NBR2 index values are respectively
0.18 and —0.02 (Fig. 3e), but the addition of straw increases the NBR2
to higher positive values. Some areas may also have burned straw or
vegetation on surface soil during agriculture or forest management,
which deposit ash on the soil surface. The presence of ash decreases soil
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reflectance, resulting in negative values, or values close to zero, for both
the indices (Fig. 3f).

As previously mentioned, spectral indexes highlight differences
between landscape objects, which are important for development of the
technique, as it allows automatization of data mining in the Landsat 5
TM time series. Discriminating vegetation from soils in satellite images
can be achieved by using the 0.25 threshold for NDVI. The laboratory
experiment indicates the potential to use the 0.25 threshold for NDVI to
discriminate pixels containing at least 80% bare soil and vegetation
(Fig. 3d). The NDVI for bare soil was 0.19 and increased gradually with
the addition of green leaves, reaching 0.71 for 100% vegetation. This
increase is due to the spectral reflectance of vegetation, which has high
absorption in the red spectral region and strong reflectance in the NIR
spectra. However, dry vegetation (straw) loses this pattern and the
NDVI did not show significant changes for its discrimination. As a re-
sult, the NBR2 was used to mask straw in the images.

NBR2 showed an increase with the addition of straw, varying gra-
dually from —0.2 (100% soil) to 0.14 (100% straw) (Fig. 3e). The
observed NBR2 values were slightly different, as afterwards it was not
possible to fix a threshold to use for remotely sensed data. Soil surface
reflectance measured by satellite sensor is highly influenced by soil
water content, surface roughness and other factors, which can increase
the NBR2 values. On the other hand, the results from Fig. 3e give a
potential range of NBR2 thresholds. As a result of these observations,
different NBR2 thresholds have been tested to support the selection of
representative bare soil areas. The NBR2 thresholds also aimed to omit
burned areas, the influence of field-soil water content and straw pre-
sence in the pixels, and the optimum choice was validated by the cor-
relation statistics between topsoil laboratory spectra and the surface
reflectance derived from the synthetic soil image.

2.4. The Geospatial Soil Sensing System (GEOS3)

Based on the indicated findings we went on to develop the tech-
nique described as GEOS3, which presented the following steps: a)
Acquisition and creation of a time series of satellite images; b) Selection
of bare soil areas in each image; c¢) Calculation of the spectral re-
flectance for each soil pixel, defined as the Temporal Soil Spectral
Reflectance (TESS); d) All TESS represent the Synthetic Soil Image
(SYSID); e) Validation and verification of the GEOS3 products.

A database was created using Level 2 data products of Landsat 5 TM
legacy data (Masek et al., 2006). The products were acquired from the
EROS (Earth Resource Observation and Science Center) Science Pro-
cessing Architecture (ESPA) ordering interface of the United States
Geological Survey (USGS). The Level 2 products consist of atmo-
spherically corrected surface reflectance bands, processed by the
Landsat Ecosystem Disturbance Adaptive Processing System - LEDAPS
of ESPA (Schmidt et al., 2013). The LEDAPS produces top-of-atmo-
sphere reflectance and applies atmospheric corrections to generate
surface reflectance products. The corrections are based on the Second
Simulation of a Satellite Signal in the Solar Spectrum - 6S (Schmidt
et al., 2013; Vermote et al., 1997). The Landsat 5 TM Level 2 data used
in the study corresponded to orbit 220 and path 75. We have selected
images with up to 10% maximum cloud cover, which were collected
between May and September from 1984 to 2011. A total of 151 images
were used to create the time series processed by the GEOS3.

Level 2 products used in this study corresponded to the surface re-
flectance (SR) TM bands in the VIS-NIR-SWIR region: B1 (450-520 nm),
B2 (520-600nm), B3 (630-690nm), B4 (760-900nm), B5
(1550-1750 nm), and B7 (2080-2350 nm); two SR-derived spectral
indices that are provided by the ESPA ordering interface: NDVI and
NBR2; and Landsat SR quality assessment bands, also provided by the
ESPA ordering interface: QA (quality assessment bands, cfmask and
cfmask confidence). Additional information on surface reflectance data,
spectral indices calculations and quality assessment bands can be found
in the online product guide of Landsat 4-7 Surface Reflectance



J.A.M. Dematté et al.

Remote Sensing of Environment 212 (2018) 161-175

Spectral indices and
quality assessment (QA) bands

Soil samples

Landsat 5
higher-level
products

TIME SERIES
DATABASE

B3-B2

, Reflectance

A 4

Lab. spectra

v

N

\

{ Temporal Synthetic !
ESQectraI Reflectance
(TESS)

Median Statistics

’

NBR2 0.225

S ————

1
1
i
]
1
|
\

N,

N,

NBR2 0.300

LANDSAT 5 / Soil masking rules N
rf fl N,
4 ac:’:‘ dzctance :" Free of water and dark vegetation (QA,,.¢) \
1,2,3,4,5and 7 P | .
1 o
i Free of adjacent cloud (QAg; cioud) ! ;n;
e i 2
i AND l " ' s
i Free of shadow (QA.jaqow) | 0<NBR2<0.025 | ————
! : ! Convolved to
i Qhe l 0 OR ' Landsat 5 TM bands
Free of cloud (QAouq) ! 0<NBR2<0.075 !
: | L 4
wo | TN | Q"
0 <NDVI<0.25 ! 0<NBR2<0.150 | i Validation
H i OR i
H AND l ! ! Canonical
1 0<B2-B1 i 0<NBR2<0.300 ; | i correlation
i i i I
i OR i
A l AND i P Pearson’s
0<B3-B2 ————»i 0<NBR2<0.225 | correlation !
f 1 1
' OR i
Soil mask C v
\ SOIL = 1 : 0 <NBR2 < 0.350 : ',' Verification
. OTHER = NA 4
L | 3 ! Bare soil
1 coverage
\ 4 1
Salt & pepper |
Masked surface A
reflectance bands Noise (SPN)
Soil line
1 Principal
1 Component
'\\ Analysis ’;

Random buffers
(for SPN)

;‘ ]
NBR2 0.350
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(LEDAPS) product (https://landsat.usgs.gov/landsat-surface-reflectance-
data-products).

2.5. Selection of potential bare soil pixels and calculation of Temporal
Synthetic Spectral Reflectance (TESS)

The bare soil pixels are masked by combining quality assessment
bands and spectral indices. The term mask is related to the process of
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extracting all potential soil pixels, assigning the remaining pixels with a
missing value (NA value in the R software), indicating not available for
calculation. Pixels containing vegetation, straw, water and other are
flagged NA. This process occurs when a pixel value exceeds at least one
threshold of the masking products (QA bands and spectral indices), and
only the remaining bare soil pixels are kept for further calculations
(Fig. 4).

The QA bands were used to mask pixels influenced by clouds, cloud
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shadows, dark vegetation or water (Zhu and Woodcock, 2012). The
NDVI was used to distinguish vegetation from bare soil areas and the
spectral mixture of soil and vegetation (Chagas et al., 2016; Shabou
et al., 2015). The NBR2 not only detects straw, but it has also been used
as an indicator of soil moisture (Musick and Pelletier, 1988). NBR2 has
also been used to map burned areas (Escuin et al., 2008) and to dif-
ferentiate clay texture of the soil surface (Madeira Netto, 1996; Shabou
et al., 2015). The difference between B3 and B2, as well as between B2
and B1 were also calculated to improve soil masking. Some studies
indicate that the discrimination of bare soil in tropical regions may be
improved with the use of B1, B2 and B3 (Fiorio and Dematte, 2009;
Nanni and Dematté, 2006).

A set of combined rules was created considering the products de-
rived from Landsat TM level 2 products, i.e., QA assessment bands,
NDVI, NBR2 and the calculated indices B2-B1 and B3-B2 (Fig. 4). Pixels
failing the QA tests were flagged as NA. The negative values of B3-B3
and B2-B1 were flagged as NA. We have considered the range between
0 and 0.25 for NDVI, and values outside this range were also flagged as
NA. Regarding the use of NBR2, six threshold ranges were tested: O to
0.025, 0 to 0.075, 0 to 0.150, 0 to 0.225, 0 to 0.300 and 0 to 0.350, and
values outside the previous ranges were also flagged as NA.
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After masking the time series, each remaining pixel (potential soil)
had its synthetic reflectance calculated through the median statistics.
The image keeps the original Landsat 5 TM spectral bands, creating the
TESS. Since TESS is related to the pixel spectral fingerprint, the final
continuous surface of spatial information is SYSI. We have also gener-
ated a raster that retrieved the cumulative sum of the times that each
pixel was assigned as bare soil during the time series.

2.6. Validation and verification of the results

Three criteria were considered for evaluation of the best NBR2
threshold, which was integrated with the other masking rules, to pro-
duce the final synthetic soil image. The canonical correlation between
the SYSI bands and the convolved laboratory spectra, as well as
Pearson's correlation analysis of paired bands (SYSI bands with the
equivalent laboratory convolved spectra), were used to validate the
results. The relative bare soil area obtained for each threshold and the
level of salt and pepper noise (SPN) in the SYSI were used to verify the
reasonableness of the results.

Considering the entire scene, the relative proportion with bare soil
was calculated for the six NBR2 thresholds. The proportion of bare soil
in agricultural areas (sugar-cane fields; Rudorff et al., 2010) was also
calculated. The other verification step, related to the SPN, was defined
by standard deviation statistics of a hundred random buffer polygons
placed over the study area. The SPN is caused by sharp and sudden
disturbances of reflectance in the SYSI, which prejudices spatial con-
tinuity and creates artifacts in the image (Gonzalez, 2009). As the noise
increases, a higher dispersion in reflectance is expected. The boxplot of
the standard deviation was plotted for each band and for each NBR2
threshold, and their median values were compared using an approxi-
mated 95% confidence interval expressed by notches in the boxplots
(Krzywinski and Altman, 2014).

The canonical correlation was used to evaluate the similarity be-
tween TESS and the laboratory convolved spectra. In canonical corre-
lation, all the bands for each group were reduced to separate canonical
variables through multivariate linear transformation (Webster, 1977).
The correlation between the scores for the first canonical variable of
each group was evaluated by implementation of the candisc procedure
in the R package candisc (Friendly and Fox, 2016). The Pearson cor-
relation was also calculated for each band between SYSI and convolved
spectra. Furthermore, the principal component analysis (PCA) and soil
line plots were also used to verify the results. The PC1 and PC2 were
plotted in PC space to check the congruence between laboratory and
TESS.

3. Results and discussion
3.1. GEOS3 processing

The multi-criteria evaluation of the NBR2 threshold produced dif-
ferent bare soil coverage over the study site (Fig. 5a). Maximum cov-
erage was acquired by using the 0.150 NBR2 threshold, with around
80% of the total area having the soil surface represented in SYSI
(Fig. 5a). On the other hand, as a high amount of soil coverage is ac-
quired when the NBR2 is less restrictive (greater values of NBR2), SYSI
quality decreases as a result of confusion with other soil-similar land
covers.

Canonical correlations between the laboratory and the spectra
generated by different NBR2 thresholds are also presented (Fig. 5a).
The use of the 0.075 NBR2 threshold provides the best association
between the laboratory and satellite spectra with a canonical correla-
tion of 0.93 (Fig. 5b). The highest threshold had a slight reduction in
canonical correlation (to about 0.9), although the bare soil area in-
creased. Despite there being small differences between canonical cor-
relations among the thresholds, we believe that 0.075 NBR2 was the
optimal choice, since it reduced the presence of artifacts in the image
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Fig. 6. Salt-and-pepper noise (SPN) and artifacts, which are caused by sudden changes in the spectral reflectance of the Synthetic Soil Image (SYSI). A RGB 321 true
color composite from an agricultural landscape is presented at the top, whereas the other equivalent images show the increase of salt-and-pepper noise as the NBR2
threshold gets higher. The images made with 0.225 and 0.300 NBR2 thresholds were not shown. Boxplots of the standard deviation of spectral reflectance, calculated
by a hundred buffers (300 m radius), for all Landsat 5 TM VIS, NIR and SWIR bands, as a function of the increase of NBR2 thresholds. The boxplots have their medians

with approximate confidence intervals of 95% (notches).

(Fig. 6a). Additionally, good bare soil coverage (68%) was acquired
with the 0.075 NBR2 threshold. The increase in canonical correlation
and spatial consistency (low artifacts) compensates the decrease of
around 10% total coverage in SYSI produced by higher NBR2 thresh-
olds, since poor-quality spectral reflectance impacts its further use for
soil modeling.

The SPN level was higher as the NBR2 thresholds increased (Fig. 6).
The purple shades of Fig. 6 are related to reflectance variations for the
RGB 543 composite. If the masking process does not select appropriate
occurrences of bare soil, spatial artifacts can appear in the SYSI, in-
creasing its SPN levels. For instance, the spatial artifacts are represented
as magenta colored pixels within a region where the purple color fully
represents the soil surface (Fig. 6). The purple shades and magenta are
specific to the SYSI RGB 543 composite, and these artifacts are different
from natural soil variations. The spatial artifacts are caused by high
frequency variations in reflectance.

The SPN verification by deviation statistics confirmed that a re-
strictive NBR2 improves the spatial consistency of SYSI, as seen in the
boxplots of Fig. 6. Standard deviation statistics were evaluated for a
hundred samples (buffers with 300 m - equivalent to 10 pixels of ra-
dius), as represented by the circles. The increase of SPN in the SYSI
resulted in higher standard deviations of surface reflectance. For the
visible spectrum (B1, B2 and B3), the SD of the 0.075 NBR2 threshold
was the lowest, with the exception of the red band, which was
equivalent to 0.150 (Fig. 6). Furthermore, the 0.075 NBR2 had the
lowest SD for all the infrared bands (B4, B5 and B7), or was at least
equivalent to other similar thresholds. However, a minimum was evi-
dent for the 0.075 value. The SPN causes higher values of SD re-
flectance, which are related to mixes of straw and other covers with the
soil, creating artifacts in the SYSI. The higher NBR2 values were not
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efficient to mask mixed straw and soil surface covers, since the vege-
tation or straw have higher intensities than soils in the visible and in-
frared spectrum (Figs. 2 and 3). Increases in the local standard devia-
tion were caused by the increase in artifacts (Fig. 6a), in some cases
appearing as salt and pepper noise due to sudden disturbances in
spectral reflectance.

The NBR2 is a normalized difference index calculated from Landsat
5 TM bands 5 and 7, which represent the shortwave infrared spectrum.
As stated in the Material and Methods section, the use of NBR2 aimed to
remove influential pixels representing straw. Although Landsat data has
limited spectral information, the combination of NBR2 and NDVI stress
the differences between the soils and other common spectral objects,
since they use different reflectance bands for their calculation. This
combination was important for improving soil discrimination. Indeed,
this was recommended in a previous study (Rogge et al., 2018), which
suggested the use of short infrared spectral bands and the combination
of additional spectral indices to improve bare soil discrimination.

Furthermore, employing a wider date range in the time series en-
abled the use of much more restrictive masks, which benefited the se-
lection of purer bare soil pixels with lower surface effects. Considering
the entire study area, with the use of just one image, GEOS3 achieved
only 0.5% bare soil coverage (Fig. 7a). By increasing the time series to
10 and 40 images, 35 and 55% bare soil coverage, were respectively
achieved (Fig. 7b and c¢). The GEOS3 achieved its maximum coverage
(68%) for the entire area using 151 images from the database (Figs. 5¢
and 7d), when considering the 0.25 NDVI and 0.075 NBR2 thresholds.
This number represents agricultural and non-agricultural areas; or,
areas where, at a certain time, the vegetation had been extracted by
anthropic or natural activities. The areas in black had no bare soil oc-
currences during the time series, and are related to forests, pastures and
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of each figure.

other land uses without soil tilling (Fig. 7). When specifically con-
sidering the agricultural areas, from the sugarcane mapping (Rudorff
et al., 2010), GEOS3 reached up to 92% bare soil coverage (Fig. 5c).
Another similar study has determined the barest soil composite for
the Swiss Plateau (Diek et al., 2017), where researchers divided the
Landsat time series into five-year intervals, achieving up to 43% bare
soil for the total agricultural areas for each period. A similar approach
was used in the work developed by Rogge et al. (2018). In both cases
the temporal variability of bare soil occurrences in the short time per-
iods was intended. In this study, besides the fact that it is possible to
retrieve each bare soil occurrence at each time during the time series,
the full date range database provided about 90% bare soil coverage in
the agricultural areas, which represents about 68% for the total scene.
These results stress the fact that a greater spatial representation of the

169

soil surface can be achieved by increasing the number of images or
widening the date range of the time series. Nevertheless, it is not only
the number of images that will indicate the success of bare soil detec-
tion in time series, but also the correct identification of the pixel as ‘soil’
that will have a greater impact on the percentage of detected area.
Median filters are widely used to smooth data in image processing
(Sun and Neuvo, 1994), therefore, median statistics were chosen to
calculate spectral reflectance for a given pixel, since they provide a
better averaged representation for highly skewed distributions of bare
soil reflectance (Figs. 8a, b). We believe that the greater the number of
locations with bare soil occurrences, the better the TESS estimation will
be when using the median statistic. Increasing the occurrences by
broadening the date range of the time series minimizes the influence
of extreme values on the frequency distribution of reflectance.
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Additionally, the median statistic was an averaging approach more
robust than the previously published methodologies (Diek et al., 2017;
Rogge et al., 2018).

The number of pixels used to calculate the median statistics were
different depending on the region. For instance, at points 1, 2 and 3
(Fig. 8a), GEOS3 calculated the median as a function of 25, 24 and 21
stacked pixels (Fig. 8b). For these calculations, each location must have
been bare soil at least once during the time series. Although the method
relies mostly on arable areas, naturally exposed soil surfaces could also
be detected. For instance, recently deforested areas and natural biomes
that have a high fractional cover of soils (> 90%) in certain periods of
the year, as in the case of savannas in tropical regions, can be detected
by the masking process. Therefore, those areas are accounted for in the
system to create the synthetic soil image.

The synthetic 543 composite contains only the spectral variations of
soil (Fig. 8a). The purple shades are due to visual enhancement used for
the SYSI and are related to soil differences (Fig. 8c). The false color
composite RGB 543 was used because the red and infrared spectral
range stresses the differences between tropical soils, which are related
to their composition features (e.g. soil minerals, hematite, quartz, il-
menite, and others). To create the visual aspect of SYSI, a linear en-
hancement (stretched between 2 and 98% of the histogram) was ap-
plied in an original Landsat 5 TM containing many spectral patterns,
such as water bodies, vegetation, urban patches, and soils. Due to this
visual enhancement, soils had lower values in B4 relative to the B5 and
B3, resulting in shades of purple. Then, the same enhancement was
applied to SYSI. This approach was used only for visualization and to
confirm that the SYSI image is a “true” soil composite. The original
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Table 1
Correlation between spectral reflectance from laboratory and Temporal
Synthetic Spectra (TESS).

Laboratory’

TESS Bl B2 B3 B4 B5 B7
Bl 0.71 0.69 0.62 0.68 0.70 0.68
B2 0.75 0.74 0.67 0.75 0.78 0.76
B3 0.69 0.70 0.67 0.76 0.80 0.78
B4 0.72 0.72 0.68 0.78 0.83 0.81
B5 0.73 0.72 0.66 0.79 0.88 0.86
B7 0.72 0.71 0.65 0.79 0.88 0.87

! Landsat 5 TM simulated bands; B1: band 1 (450-520 nm), B2: band 2
(520-600 nm), B3: band 3 (630-690 nm), B4: band 4 (760-900 nm), B5: band 5
(1550-1750 nm), B7: band 7 (2080-2350 nm). p < 0.0001.

values of reflectance, however, is preserved for further analysis.

3.2. Validation and verification of the GEOS3 products

Different qualitative and quantitative approaches were performed in
order to validate the GEOS3 products. The first qualitative evidence was
evaluation of soil line information between B3 and B4 (Baret et al.,
1993). The soil line was compared for both convolved laboratory and
respective TESS from the SYSI (Fig. 9a). The comparison presented little
difference between the sources, and the patterns were very close to the
results from a soil spectral library of a Brazilian tropical region (Nanni
and Dematté, 2006), since the same soil patterns occurred between B4
and B3, and between B5 and B7 (Fig. 9a, b). The information provided
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B4), b) dispersion between B5 and B7, and c) scores dispersion of the entire visible, near and shortwave infrared spectrum principal components (PC) for each

the spectral patterns is an important fingerprint and has been related to
soil constituents and other environmental factors, as demonstrated by
Viscarra Rossel et al. (2016).

In addition, similarities between the laboratory convolved spectra
and the respective TESS were also evaluated using principal component
analysis. The first 2 PCs of each dataset (laboratory and TESS) were
compared according to their location in the principal component space
(Fig. 9¢). Both datasets present a similar pattern, with a dense cloud of
points located on the right-hand side of the y axis, while a second group
of points had a widely spread pattern on the left-hand side of the ver-
tical axis. The slight differences between spectra dispersions are mostly
due to environmental influences, such as soil moisture and surface
cover mixtures. The similar dispersions of the 2 datasets in the PC
space, besides the fact that PCs 1 and 2 explain most of the spectral data
variability (~96%), shows GEOS3 to be a reliable source of soil in-
formation via satellite data mining.

Another important piece of evidence that supports the contention
that SYSI represents surface topsoil is the high correlation between
satellite and laboratory spectra (Table 1). Pearson's correlation (r) be-
tween spectral data for these two levels of acquisition varied between
0.67 (laboratory B3 with SYSI B3) to 0.88 (laboratory B5 with SYSI B5),
with a mean of 0.77. The correlation for B5 and B7 had the highest r.
Although the strongest correlation was for B7, this band from TESS
presented a slightly lower mean reflectance due to the increased in-
fluence of water in this region of the spectrum for remotely sensed data,
in agreement with Musick and Pelletier (1988) and Khanna et al.
(2007). The lowest correlation for visible bands could be attributed to
atmospheric scattering effects, which are more present in the visible
spectrum region (Jensen, 2013). Furthermore, the statistical correlation
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Fig. 10. Selected case inside the entire study site, illustrating a) a single Landsat 5 TM scene in RGB 321; b) Soil Synthetic Image (SYSI) in the RGB 321 composite
with visual enhancement; ¢) SYSI in RGB 543 composite with visual enhancement.

between image spectral reflectance and topsoil spectra was a direct
validation of the accuracy of GEOS3.

The method was supported by a robust direct validation using a
total of 919 topsoil samples. TESS consistency was thus confirmed by
the association with the laboratory spectroscopy reflectance analysis.
For instance, an image subset (RGB 543 composite) was used to show
the spectral similarity between the sources (Fig. 2b). It was observed
that, in general, three main topsoils are related to the colors presented
in the image - dark purple, intermediate purple and magenta. Each
spectral reflectance curve had a different pattern regarding shape and
intensity. The areas with dark purple are related to soils with high
contents of opaque minerals (ilmenite and magnetite) and hematite.
From purple to magenta shades, these minerals decrease, and the higher
proportion of quartz causes an increase in reflectance.

Although the data obtained in the laboratory were related to dry
sieved soil, the intensities and shapes were quite similar for both the

sources (Fig. 2b). In the case of TESS, there is a clear difference between
B5 and B7 due to the field condition factors, whereby its spectral re-
flectance was more affected by moisture and other environmental fac-
tors (Khanna et al., 2007). Moreover, although the laboratory spectra
were taken from samples of a single survey, the convolved spectral
reflectance is very similar to the TESS, confirming that it is an accurate
spectral reflectance representation of topsoil samples (Fig. 2b).

3.3. Potential of synthetic soil image (SYSI)

The GEOS3 used a time series (1984-2011) from Landsat 5 TM to
detect bare soil areas, especially, but not exclusively, for agricultural
areas. It is similar to “removing” the land cover (Fig. 10a) and pro-
viding only the picture of the soil surface for an entire area (Fig. 10b
and c). In areas with natural forest, GEOS3 cannot run correctly (see the
black regions in Fig. 10b and c). The spatial variation of soils in the
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Fig. 11. 2.5-D representations of composites from the study site: a) a single Landsat 5 TM scene in the RGB 321; b) Synthetic Soil Image in the RGB 321; c) Digital

Elevation Model.

study area can be seen in the true color composite of the SYSI (RGB 321,
Fig. 11b). The different shades are related to the different topsoil
compositions, where redder soils have higher hematite content than the
yellow ones. These aspects of the image can reveal further information,
which usual digital elevation models (DEM) and single images
(Fig. 11a) are unable to provide. For instance (Fig. 11b), SYSI provides
additional information on soil surface that was not evident in DEMs
(Fig. 11c). Therefore, the SYSI can be integrated with other spatial data
(i.e. DEM) to assist in spatial modeling and digital soil mapping.
Recently published papers have also proposed methodologies for
the generation of a bare soil composite based on satellite time series

(Dematté et al., 2016; Diek et al., 2017; Rogge et al., 2018). Dematté
et al. (2016) combined 5 years of images and achieved 85% bare soil,
albeit in a very specific small region. Rogge et al. (2018) developed the
Soil Composite Mapping Processor (SCMaP), which is an automated
process to overcome the limited availability of bare soil in satellite
images. The researchers applied the SCMaP over Germany to produce
spatial and temporal soil composites for further large-scale topsoil
analyses in temperate zones. Additionally, Diek et al. (2017) developed
a method to maximize bare soil coverage over a large agricultural area,
creating the Barest Soil Composite for properties modeling.

Although the mentioned studies have the same objective, the
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methodologies require distinct processes to generate and validate the
bare soil composite. For example, Rogge et al. (2018) proposed the
generation of a new index for soil masking, instead of using common
spectral indices, e.g. NDVI. The GEOS3 masking process uses the NDVI
and NBR2, both calculated and provided by the ESPA ordering interface
for Landsat data. Additionally, the present study proposed the use of
selected products of a full satellite time series, in this case the use of
Landsat 5 TM, which includes surface reflectance bands, spectral in-
dices and quality assessment bands. The GEOS3 also provides the
temporal frequency of bare soil exposition, similar to the study of Rogge
et al. (2018). This information can be extended to future soil de-
gradation research, improving the understanding of the relationships
between remote sensing indicators and soil properties (Shoshany et al.,
2013). Furthermore, the strong correlation between topsoil spectra and
synthetic soil reflectance stresses the validation of the remote sensing
products and provides support to the use of the spectral reflectance
from the SYSI for soil modeling in future studies.

The basis for understanding image spectral reflectance is the la-
boratory information. Thus, it is important to look at the shapes, in-
tensities and the entire soil spectral signature, to guarantee the quality
of the spectral measurement. In fact, field data may be subject to several
alterations as a result of soil management (Dematté et al., 2016).
However, it can be observed a similarity between spectra obtained from
the SYSI and laboratory convolved spectra (Fig. 2b). The shape, in-
tensity and tendency, agrees with our empirical and theoretical back-
ground (item 2.3).

4. Conclusion and final considerations

The study describes GEOS3, which successfully defined synthetic
spectral reflectance of soil from a multi-temporal and multispectral
remotely sensed database. Based on 27 years of Landsat products, it was
possible to retrieve soil spectral reflectance represented as a spatially
continuous surface in a single image. Although the data used in GEOS3
were obtained from different years, the method enabled calculation of
median reflectance for each pixel from 151 images to create a TESS,
which is a synthetic spectral fingerprint of the soil surface represented
in the Synthetic Soil Image (SYSI).

Comparison of laboratory reflectance spectra from 919 soil samples
in the same georeferenced location as TESS presented Pearson's corre-
lation between 0.67 and 0.88. The canonical correlation reached a
value of 0.93. TESS presented a very similar shape to the spectra ob-
tained in the laboratory. Moreover, soil line technique and PC analysis
demonstrated similar patterns between laboratory and SYSI informa-
tion.

The system was able to identify areas with exposed soils during the
time series, which opens doors for other research interests, such as soil
degradation and land evaluation. Using one single image, the user can
find 0.5% bare soil in the total area. With GEOS3 we achieved 68% in
the total area of 14,614 km® When considering only areas with agri-
culture (sugarcane crops), the system reached 92%.

The functionality of GEOSS3 is evident, as it could be used to support
soil surveys, digital soil mapping (e.g. mapping of clay, sand and carbon
contents), soil and agriculture monitoring, precision agriculture, soil
sampling allocation, soil management zones, land use planning, soil
conservation and for improvements to existing soil maps. The in-
formation provided by GEOS3 may thus assist in different decision-
making processes.

Although the technique used only Landsat images, the method is
able to employ time series data from any satellite. Additionally, the
success of the procedure depends on the following key factors: (a) each
location in the area must have had bare soil at some period in the
time series, with the SYSI quality improving as the availability
of bare soil occurrences increases; (b) the original images and their
processing should have quality assessment indicators, (c) a database
(Iaboratorial spectral library) is necessary to validate image processing,
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(d) evaluation of the temporal spectral reflectance (intensity and shape)
and (e) the image database should be related to a season that minimizes
environmental influences on the soil, especially in regard to soil water
content.
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