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ARTICLE INFO ABSTRACT

Handling Editor: A.B. McBratney Soil analysis is an important information in agriculture and environmental monitoring. It is usually performed by
wet chemical analysis with high cost and chemical products consumption. In the world, it is estimated that
1.5 billion ha is used as agricultural area. If every 5ha 2 samples (2 depths) were collected, we would have 600

million soil samples for chemical and granulometric analysis. Considering just the analysis of organic matter
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Chemometrics (OM) by wet combustion method in the laboratory as an example, we would be utilizing about 840 thousand kg

Precision agriculture of dichromate and ammonium ferrous sulfate and 3 million L of sulfuric acid. The use of these reagents can have

Ee(fjlectanc'e a huge ecological consequence if they do not have an adequate final disposal. An alternative methodology such
edometrics

as proximal sensing can be utilized with low environmental impact. Therefore, the objective of this study was to:
i) evaluate the analytical quality of soil attributes via different traditional laboratories and sensors, ii) evaluate
the prediction of the models using sensors, iii) assess the uncertainties of lime recommendation analyzed by the
laboratories. We applied 96 soil samples at two depths collected in Sao Paulo State, Brazil. The determination of
15 soil attributes was performed by four different routine laboratories, and they were predicted by 4 sensors
(400-2500 nm). Results indicate that the determination of attributes via chemical analysis with low quality led
to high error in spectral models. The great predictive performances of clay, OM, cation exchange capacity (CEC),
and pH enable the use of sensors in the evaluation of these attributes. Overall, the criteria for classification of
analytical results showed that sand, silt, clay, pH, OM, CEC, and base saturation were the attributes that can be
determined by the spectroscopy technique with high-quality outcome. The lime recommendation derived from
proximal sensor analysis can be used as an efficient method, since it presented a high correlation with the
laboratory result. In this sense, a hybrid laboratory analysis can be developed to optimize analysis with better
quality control, which is indicated as a great opportunity in the near future.

1. Introduction The study of soil attributes (i.e., clay, carbon, nutrients) implies on

the determination of its analytical value. Soil attributes mapping is

Soil is one of the most important resources for humanity. The che-
mical and granulometric characteristics of soils are responsible for
water dynamics, climate, organisms, forests, carbon and others. In ad-
dition to their environmental importance, they are the basis for food
production. FAO indicates that in the next 30 years we will increase by
35% in population, going from 7.6 to 10.26 billion people in the world.
How to feed so many people? This concern was also discussed in
McBratney et al. (2014), in which the authors introduced the term “soil
security”, indicating that it is imperative to take care of soils or we will
likely have environmental problems in several areas.
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recommended prior to soil management, as soil analyses are essential
for assessment and monitoring of its chemical and physical conditions,
indicating the need for fertilization, liming and conservation techni-
ques. The most applied chemical methods in laboratories are those
called traditional wet analysis.

Considering Brazil, the agriculture area is around 60 million ha with
a potential to expand to 70 million in the coming years. Nowadays,
Brazil uses precision agriculture (PA) techniques in approximately 10%
of its farmland, which involves between 100,000 and 200,000 soil
analyses per year. The number of soil analyses is even more impressive
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when considering sampling at two depths (0-20 and 20-40 cm, in
general), which can reach 400,000 soil analyses. Considering the world
demand, there is an estimate that > 600 million soil samples can be
analyzed every year.

However, the numbers of analyses are not exactly the main issue.
One analysis takes about 3 to 15 days for delivering results, which is not
adequate considering the speed required in PA. Despite the longtime,
the traditional laboratory analysis uses several types of chemical sub-
stances. For instance, to determine the soil organic matter (OM), the
wet combustion method is predominantly applied, which uses dichro-
mate (Cr,0,27) (0.196 g), ammonium ferrous sulfate hexahydrate (Fe
(NH,4)2(S04),.6H50) (1.20 g), and sulfuric acid (H,SO4) (5 mL) for only
one sample. Considering just the analysis of OM, 1.396 g and 5 mL of
these reagents are used, reaching a disturbing number of 698 kg and
2500 L of these toxic chemical compounds per year. Considering the
potential of 600 million soil samples to be analyzed globally, it will
consume about 840 thousand kg of dichromate and ammonium ferrous
sulfate and 3 million L of sulfuric acid. Besides, for OM, it is estimated a
cost of US$ 5.00 per sample, with an annual expenditure of US$ 2.5
million. We have to emphasize that this is not a local problem.
Countries with established agriculture, especially the developing ones
(from Latin America and Africa) that have a lot of land for agricultural
expansion, are the most affected.

Soil analyses are subject to several errors due to sampling, products,
methods, humans, and others (Olsen and Sommers, 1982). In fact,
O'Rourke and Holden (2011) stated that routine analyses have some
limitations, i.e., reagents quality, brands of equipment and extensive
sequence of steps. Consequently, repeated analysis of the same sample
may show variations. These variations are only acceptable if they are
within a certain interval. This was ratified by Cantarella et al. (2006)
that identified differences for a same sample in the same or between
laboratories. These issues took the community of soil scientists on the
investigation of new techniques for soil analysis. The main focus was
how to reach soil results in a fast, simple, more stable and no-pollutant
method.

In this sense, years of experiments took many authors to observe
proximal sensing as a promising technique that can bring light to the
issue. Indeed, first findings of Zheng and Schreier (1988) quantified soil
patterns and field fertility using spectral reflection. Ben-Dor and Banin
(1995) created the near infrared analysis (NIRA), which is an approach
to examine the capability for predicting soil properties from the re-
flectance curves in the near infrared region of arid and semiarid soils of
Israel.

Spectroscopy is a proximal sensing technique based on the detection
of the electromagnetic radiation reflected by the soil. In the same way,
spectroscopy in the visible (Vis: 400-700 nm), near infrared (NIR:
701-1100 nm) and short-wave infrared (SWIR: 1101-2500 nm) regions
of the electromagnetic spectrum associated with chemometric methods
has allowed the quantification of physical, chemical and mineralogical
attributes (Viscarra Rossel and Behrens, 2010). Vis-NIR-SWIR spectro-
scopy technique emerges as a promising new option for soil analysis,
with advantages such as: the possibility of predicting several attributes
in just one spectral reading, facility of data acquisition from large
amounts of samples, it is a rapid analysis and without the use of en-
vironmentally hazardous chemicals (Minasny and McBratney, 2008;
Viscarra Rossel and Behrens, 2010). Nanni and Dematté (2006) reached
important correlation between traditional and spectroscopic methods,
but the authors emphasized the necessity of more research in this re-
gard. Although spectroscopy is promising, results are variable as re-
viewed by Soriano-Disla et al. (2014) and Nocita et al. (2015). O'Rourke
and Holden (2011) highlighted that with the spectroscopic methods it is
possible to have costs reduction for OM of about 90%, with the po-
tential to read 720 samples per day. In addition, the soil attributes
quantification via reflectance spectroscopy technique is based on mul-
tivariate statistical methods, generating calibration models that corre-
late the spectral with the analytical values obtained from laboratories
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with standardized methodologies. Thus, the predictive quality of the
models depends on the precision and accuracy of the reference la-
boratory determinations (Rayment et al., 2012; Reeves III, 2010).

The types and the range of spectral sensors also influence the
quantification of soil characteristics. This method of determining soil
attributes by sensors has gained prominence due to two fundamental
factors, namely fast information and the environmental appeal re-
garding the use of a safe methodology. Hence, the quantification of soil
attributes must be performed to generate necessary information about it
and ensure proper management of this natural resource.

Techniques using spectral data have been applied and shown pro-
mising success in the quantification of soil attributes worldwide
(Viscarra Rossel et al., 2016). However, few scientific studies compared
the analytical results between different laboratories to evaluate how
their data impact on the spectral models. If we assure that the variation
on the results are real, can sensors detect this variation? How much of
the sensor prediction performance is affected by the reference value of
laboratory analysis? Can a sensor perform better applying the most
accurate reference value or applying an average reference value? The
answers for these questions are still unknown.

Regarding the variations of soil spectral features considering dif-
ferent sensors, Romero et al. (2018) observed that there is low differ-
ence between sensor measurements, which leads to a more stable
technique. Taking into consideration these low differences, caused by
geometry and equipment variation, Ben-Dor et al. (2015) determined a
protocol to standardize measurements between sensors. This takes
spectroscopy methodology a step ahead of traditional ones.

Seeking the increase of food production for the human needs, op-
timization of fertilizers in agricultural production, and the decreasing of
chemical products in the soil analyses, it is essential to search for al-
ternatives and thereby reduce the environmental impact. In this sense,
understanding the variations between laboratories is a fundamental
part of this study. We intend to demonstrate the advantages and lim-
itations of soil analysis methodologies and the impact of different la-
boratories and sensors in the prediction of attributes, thus allowing
better decisions for soil management. We understand that it is not
possible to substitute traditional soil analysis completely, because re-
flectance is a dependent variable. The objective of the present study was
to: i) evaluate the analytical quality of soil attributes via different la-
boratories and sensors, ii) evaluate the prediction of the models using
sensors, and iii) assess the uncertainties of lime recommendation ana-
lyzed by the laboratories. Therefore, the focus is to bring light on the
development of a hybrid laboratory analysis approach, where one
would have in simultaneous both measurements: 80% of soil samples
analyzed by spectroscopy and only 20% by traditional analysis.

2. Material and methods

2.1. Characterization of the study area, collection and preparation of soil
samples

We collected the soil samples in an area that covers 29 munici-
palities located at Sao Paulo State, Brazil. The study areas present
tropical climate, with hot and humid summer, cold and dry winter, with
average temperatures of 20 °C, with annual thermal amplitude of up to
7 °C. Rainfall varies from 1000 to 1500 mm/year. 48 profiles were
collected at two depths of 0-20 cm and 80-100 cm (A and B horizons,
respectively) totalizing 96 soil samples. The collected material was
dried in 45 °C for 48 h, ground and sieved in a 2 mm mesh.

2.2. Laboratory and spectral analysis

For the reference soil analysis, four laboratories were selected in Sao
Paulo State, which are regularly evaluated by the proficiency test of the
Agronomic Institute of Campinas (IAC), Brazil. The 96 soil samples
were divided in three replicates (in a total of 288 soil samples) and sent
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(Inaccuracy=2)+Imprecision

El= 3 ®)

100

_ CECx(BS, — BS))
10%RTNP

LR )
where: the number of determinations is the total number of soil samples
measured; the number of penalties is given by the sum of rejected
samples; CV is the coefficient of variation of each laboratory; LR is the
lime recommendation expressed in tha™!; CEC is the cation exchange
capacity expressed in mmol.dm~3; BS; is the base saturation of the
soil; BS, is the base saturation that we want to raise to (it was con-
sidered BS = 70%); RTNP is the relative total neutralizing power
(variable dependent on the liming material employed). The RTNP value
of 67% was used. More details of this methodology can be found in
Cantarella et al. (2016).

2.4. Prediction models

The modeling for prediction of 15 attributes using the spectral re-
flectance of four sensors was performed using Alrad Spectra graphical
user interface in R (R Core Team, 2017). The total of 288 soil samples
was randomly divided in calibration (200 samples, ~70%) and vali-
dation set (88 samples, ~30%). The samples of two depths (0-20 cm
and 80-100 cm: A and B horizons, respectively) were mixed within the
data sets. Aliah Baharom et al. (2015) reported that the best calibration
model for soil properties estimation was the one combining depths.

The modeling was performed by partial least square regression
(PLSR) method. Predictive models for each attribute were developed to
estimate the soil attribute value using two approaches of reference
values and the Vis-NIR-SWIR spectral data of four sensors. The re-
ference value approaches were i) the mean value of all laboratories, and
ii) the value of best laboratory for each attribute. In the text, they will
be referred as “mean” and “best”. The best laboratory was selected for
each attribute based on the best EI of four laboratories. As we reached
the best fitted model for each attribute, the predicted value was used to
perform the statistical criteria proposed by Cantarella et al. (2016). The
models were evaluated by the following indices: coefficient of de-
termination (R?) and root mean square error (RMSE). The R? provides
the percent of variance that is explained by the model. The RMSE is an
easily interpreted error metric because it has the same data units of the
attributes analyzed.

3. Results and discussion
3.1. Descriptive statistics

Observing the results for all laboratories, some attributes presented
a high range of minimum and maximum values, e.g. P, H + Al, CEC, SB,
and BS (Table 2). The laboratory 1 presented biased median values for
nearly all attributes, which may increase the inaccuracy and impair the
performance of the models. For each attribute the SD varied in all la-
boratories, showing that this parameter had no tendency. The lowest
CV values were found for pH, sand and clay and the highest value was
found for K. The CV values for all attributes were below 32.4%. This
statistical parameter can influence the error evaluation increasing the
imprecision. In contrast, the low values of SD found for pH determi-
nations from all laboratories were an indicative of the low error esti-
mation as proposed by Cantarella et al. (2016). The large range of each
attribute contents directly reflects the representativeness and will po-
sitively influence the stability of the predictive models (Debaene et al.,
2014).

3.2. Predictive performance of soil attributes by sensors

The predictive results for pH were generally low applying the best
laboratory as reference value (Table 3). The RZ, ranged from 0.52 to
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0.71 considering all laboratories. The highest result was found applying
sensor 1 (RZ, = 0.71 and RMSE,,; = 0.36). Tekin et al. (2013) explored
the potential of Vis-NIR-SWIR spectroscopy for on-line measurement of
soil pH, with the intention to produce variable rate lime re-
commendation maps. The authors obtained very good accuracy with
the on-line measured spectra (R? = 0.81, RMSE = 0.20).

For OV, the predictive performances of sensors using the mean of
all laboratories and the best laboratory were similar. For validation
results, comparing both approaches only sensor 1 performed better for
mean (RZ, = 0.83, RMSE,,; = 4.54 gkg ™ !). Concerning the prediction
using the best laboratory, the highest result was found for sensor 2
(R2,; = 0.82, RMSE,, = 4.70 gkg™!). The predictive performance of
models is in accordance with the results found in the literature (Aratjo
et al., 2014; Nawar et al., 2016; Wang et al., 2015), where the overall
performance of OM models presents R? around 0.8.

However, the predictive result of P was not as good as for OM. The
models that used mean of all laboratories as reference value performed
poorly compared to models using the best laboratory as standard value.
In the first approach, regardless of the sensor used, the R2, did not
exceed 0.36. The best prediction result for P was found applying sensor
3 with the best laboratory: RZ,; = 0.60 and RMSE,, = 29.62 mg dm™3.
The poor prediction results for P may be attributed to the high variance
of minimum and maximum values (Table 2) and also to its high lability
in the soil, which makes difficult its precise determination.

The models applying the best laboratory also showed the best result
for K, in particular for the sensor 1 (RZ,; = 0.72 and RMSE, = 1.52
mmol. dm ~3). The predictive performances of Ca and Mg models were
moderate. For both attributes, the models using the mean of all la-
boratories showed the best performance. Besides, for both attributes,
sensor 3 presented the best results (Ca: RZ%, =0.77 and
RMSE,,; = 11.24 mmol. dm ™3 Mg: R%, = 0.76 and RMSE,, = 6.61
mmol, dm ~3).

The predictions of Al and H + Al were good. Sensor 1 presented the
best prediction for Al in both reference value approaches (mean:
R2, = 0.86, RMSE,, = 4.47 mmol. dm~3, and best: RZ; = 0.69,
RMSE,,; = 6.32 mmol. dm™3). For H + Al, sensor 1 with the mean of
all laboratories achieved an impressive R%, = 0.89 and RMSE,,, = 5.98
mmol. dm~3. The AS presented a good prediction result (RZ, = 0.79
and RMSE,,; = 11.39%, for mean of all laboratories), however slightly
below Al and H + Al results. The Al presented very good prediction
results compared to other papers. For instance, Viscarra Rossel et al.
(2006) applied diffuse reflectance spectroscopy in distinct spectral
ranges for simultaneous assessment of various soil properties. The
highest R? value achieved for Al in their study was 0.61 applying near-
infrared reflectance.

The prediction of SB, CEC, and BS achieved a great performance.
Sensor 1 with the mean of all laboratories approach reached the best
prediction for SB with an RZ, = 0.85 and RMSE,, = 15.07 mmol.
dm 3. For the same reference value approach, CEC showed a good
prediction for sensor 2 (RZ; =0.92 and RMSEy = 15.41 mmol.
dm™3). The BS presented the best result using sensor 1, with the best
laboratory (R2, = 0.79 and RMSE,, = 10.34%).

For particle size fractions, the greatest R? for validation set of all
attributes was found for clay content. The sensor 1 presented the best
predictive performance for sand, silt, and clay (sand: RZ, = 0.91 and
RMSE,.; = 5.82%; silt: R, = 0.89 and RMSE,, = 3.59%; and clay:
R2, = 0.91 and RMSE,, = 4.95%). Both reference value approaches
achieved similar prediction performance. These results are considered
very good comparing with some studies (Casa et al., 2013; Vasques
et al., 2016), especially for sand and silt.

The great performances of the predictive models enable the use of
sensors in the evaluation of soil attributes. The prediction of some soil
attributes, e.g. clay, OM, CEC, and pH, via sensors has huge con-
sequences in the context of precision agriculture. This proximal sensing
technique is able to assist the soil analysis in order to diminish the
volume of soil samples to be analyzed by the routine laboratory. Instead



J.A.M. Dematté et al.

Geoderma 337 (2019) 111-121

Table 2
Descriptive statistic of the analytical attributes for all soil samples.
Attribute®
pH oM P K Ca Mg Al H+ Al SB CEC BS AS Sand  Silt Clay

Parameters Laboratory CaCl, gkg™! mgdm™> mmol.dm 3 %

Minimum 1 3.8 1.0 0.3 0.2 1.0 1.0 0.5 2.0 0.5 23.4 3.0 0.3 11.5 1.0 5.3
2 3.7 1.0 1.0 0.0 0.4 0.4 0.0 10.0 1.1 0.7 4.4 0.0 10.8 1.6 2.5
3 3.8 3.0 1.0 0.1 2.0 1.0 0.0 11.0 3.6 26.7 7.6 0.0 8.1 2.6 6.6
4 3.8 5.7 0.7 0.0 3.1 1.9 0.5 9.2 5.6 26.9 139 0.2 6.8 1.9 5.0

Maximum 1 6.2 48.0 302.0 14.1 115.0 46.0 86.0 313.0 168.2 3357 93.0 86.0 93.1 55.2 81.5
2 6.7 53.0 307.0 20.7 161.4 87.3 1169 297.0 242.1 452.7 945 83.6 85.7 59.0 75.4
3 7.0 66.0 347.0 18.4 141.0 60.0 90.0 319.0 204.6 3624 941 788 86.5 589 718
4 7.1 41.3 712.7 13.2 1451 645 0919 198.8 205.7 309.0 939 739 87.0 55.2 73.0

Median 1 4.8 15.3 12.4 2.3 18.8 8.3 5.7 42.1 29.4 71.7 41.1 18.4 45.0 12.0 43.0
2 4.8 18.3 14.1 2.9 27.5 152 7.3 38.1 45.5 83.3 52.1 16.4 4338 16.3 399
3 4.9 17.4 16.4 2.9 25.5 120 6.6 45.5 40.3 85.9 469 16.4 42.0 17.3  40.7
4 4.9 15.8 14.9 2.5 32.0 139 6.5 32.1 48.4 80.5 58.7 12.0 43.2 171 39.7

Standard deviation 1 0.1 1.1 2.2 0.4 3.3 1.2 1.4 6.3 4.3 8.0 5.1 2.6 1.4 3.1 2.7
2 0.1 0.9 1.8 0.4 4.2 1.6 1.1 6.3 5.9 11.5 2.7 0.9 0.8 1.8 1.5
3 0.0 4.7 1.3 0.2 1.8 0.9 0.6 3.5 2.7 5.1 1.8 1.4 0.5 1.0 0.8
4 0.1 1.3 6.7 0.4 3.4 2.5 1.5 4.2 4.4 7.5 2.7 2.7 1.9 2.5 2.2

Coefficient of variation in % 1 2.6 9.3 31.3 21.8 26.7 16.3 122 14.0 20.6 10.7 17.3 179 37 32.4 6.8
2 2.3 6.3 27.1 145 158 10.8 264 15.2 13.2 14.1 6.6 246 24 13.3 49
3 1.0 28.5 14.3 11.2 8.1 8.4 12.8 7.5 7.7 6.1 5.2 14.1 1.4 7.9 2.4
4 2.4 9.5 39.7 28.8 9.9 18.3 18.0 109 8.3 8.4 5.5 21.7 5.7 16.0 6.4

@ Potential of hydrogen (pH), organic matter (OM), exchangeable phosphorus (P), exchangeable potassium (K*), exchangeable calcium (Ca%™), exchangeable

magnesium (Mg“), exchangeable aluminum (AI*), potential acidity (H + Al), exchangeable sum of the bases (SB), cation exchange capacity (CEC), base saturation

(BS), and Aluminum saturation (AS).

of sending all soil samples to the routine laboratory analysis, the farmer
can analyze around 80% or even more of the total collected amount in
the Vis-NIR-SWIR spectroscopy laboratory. We are calling that as hy-
brid laboratory analysis.

The reflectance spectroscopy technique has been applied as an al-
ternative for routine agronomic soil analyses since early 1990's. For
instance, Cohen et al. (2007) showed that for some attributes (pH, P,
Ca, and K) the accuracy was moderate, whereas K, Cu, Mg, Mn, Zn, and
Fe exhibited low accuracy. They recommended the refinement of
standard laboratory procedures before measurement by the sensor as a
viable alternative to improve modeling results. Furthermore, the au-
thors demonstrated that Vis-NIR-SWIR reflectance spectroscopy error
rates were comparable to laboratory analytical error rates (being
smaller in some cases), suggesting that the observed poor performance
of prediction models may be attributed to the uncertainty inherent in
laboratory data.

Most attributes achieved great prediction results (Table 3). For OM,
K, CEC, BS, sand, silt, and clay attributes this technique appeared as a
potential alternative to reduce the cost and time in soil analysis, as it
maintains high accuracy. However, the type of sensor influenced the
calibration of the models. The spectral reading of each sensor can vary
in: calibration of the equipment, number of reading repetitions, time in
reading the Spectralon plate, angle and distance of the sensor in rela-
tion to the sample and sources of light. As all these variables were
controlled and remained unchanged, the differences in the prediction of
the same attribute can be mainly due to the regression modeling, and
the dissimilarity between spectroradiometer brand and internal cali-
bration. In Ge et al. (2011), the authors developed models investigating
sets with and without a controlled scanning protocol. The authors
concluded that the establishment of a protocol decreases the variations
that are related to extraneous effects due to multiple instruments/
scanning.

The use of reflectance spectroscopy method may have the same
analytical quality as the traditional laboratory method for some attri-
butes. The studies over the years demonstrated that Vis-NIR-SWIR re-
flectance spectroscopy can be used to determine accurately important
soil constituents, such as organic carbon, clay, sand, and CEC. This

technique possibly will be employed as a hybrid laboratory method in
estimating rapidly, non-destructively, accurately, and at low-price some
attributes in soil samples, demonstrating its applicability to char-
acterize agricultural soils. In the next section, the criteria for classifi-
cation of analytical results proposed by Cantarella et al. (2016) will be
discussed.

3.3. Results of inaccuracy and imprecision indices

All analytical quantifications are subject to uncertainties, although
there are boundary ranges for it. The number of soil samples penalized
(discrepant results outside the confidence interval) was evaluated in the
laboratory. The determinations with the highest number of penalized
samples by laboratories (sum of all laboratories) were found for P, K,
Ca, Mg, Al, SB, AS, and silt (Fig. 1). These attributes presented a sum of
penalties above 100 samples out of the total 1152. The least penalized
attributes were CEC, sand, pH, H + Al and clay.

The number of penalized samples predicted by sensors followed the
same trend for laboratories (Fig. 1). The attributes with the highest
number of penalized samples were equivalent to laboratories. In par-
ticular, the attributes P, K, Ca, Mg, Al, H + Al, SB, and AS showed over
150 penalized samples. The attributes pH, OM, CEC, BS, sand, silt, and
clay were less penalized compared to laboratories. Observing the results
of sensors using the mean of all laboratories and best laboratory as
reference values in the prediction, the number of penalized samples
were analogous, given the low CV values (Table 2) and the close pre-
dictive performance of models for these attributes (Table 3).

The inaccuracy of attributes for all laboratories was low (Fig. 2a).
The highest inaccuracy was found for attribute AS in laboratory 1 and 2
(Fig. 2a). Regarding the imprecision index of laboratories (Fig. 2d),
which represents the incompatibility in the reproduction of values for
the same sample, Ca presented the highest percentage (48.6% for la-
boratory 4). The following attributes presented imprecision above 20%
for at least one laboratory, representing weak reproducibility: Mg
(26.7% and 35.3%, laboratories 1 and 4, respectively), H + Al (20%
and 22.4%, laboratories 1 and 4, respectively), SB (32.4% and 22%,
laboratories 2 and 4, respectively), Al (32.7%, laboratory 1), K (34.9%,
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Table 3
Prediction performance of attributes applying PLSR method for four sensors.
Calibration Validation
Mean of all laboratories® Best laboratory” Mean of all laboratories® Best laboratory”
Attribute Sensor R? RMSE R? RMSE R® RMSE R? RMSE
pH 1 0.95 0.12 0.72 0.27 0.71 0.36 0.40 0.41
(CaCly) 2 0.68 0.33 0.60 0.30 0.61 0.35 0.42 0.42
3 0.65 0.33 0.59 0.33 0.60 0.41 0.61 0.30
4 0.77 0.28 0.68 0.29 0.52 0.42 0.46 0.37
oM 1 0.85 3.39 0.87 3.95 0.83 4.54 0.78 4.41
(gkg™ 2 0.95 2.19 0.88 3.43 0.79 4.38 0.82 4.70
3 0.88 3.32 0.87 3.83 0.76 4.44 0.76 5.37
4 0.92 4.29 0.86 3.85 0.79 4.29 0.81 4.97
P 1 0.39 25.95 0.35 25.23 0.35 32.17 0.42 43.09
(mg dm~3) 2 0.24 29.92 0.34 36.57 0.25 32.71 0.23 25.39
3 0.85 15.50 0.95 6.73 0.27 27.12 0.60 29.62
4 0.43 26.25 0.74 20.25 0.36 28.93 0.36 32.34
K 1 0.98 0.36 0.94 0.74 0.71 1.19 0.72 1.52
(mmol, dm™~3) 2 0.97 0.47 0.87 0.99 0.66 1.74 0.71 1.87
3 0.67 1.46 0.61 1.68 0.64 1.72 0.70 1.92
4 0.62 1.58 0.70 1.56 0.61 1.72 0.65 1.82
Ca 1 0.87 8.16 0.89 8.69 0.72 9.82 0.70 11.52
(mmol, dm™~3) 2 0.72 11.75 0.71 13.05 0.64 11.84 0.62 15.85
3 0.95 4.42 0.96 5.60 0.77 11.24 0.74 10.63
4 0.83 8.98 0.93 6.64 0.68 11.65 0.55 16.41
Mg 1 0.95 4.81 0.88 3.77 0.81 10.16 0.71 6.27
(mmol, dm %) 2 0.67 5.74 0.63 6.64 0.69 6.66 0.60 7.41
3 0.89 3.45 0.87 3.80 0.76 6.61 0.72 6.65
4 0.69 5.08 0.88 3.69 0.64 8.22 0.64 7.14
Al 1 0.95 2.2 0.78 6.08 0.86 4.47 0.69 6.32
(mmol. dm ™) 2 0.83 5.46 0.76 5.84 0.81 6.78 0.61 7.03
3 0.93 3.54 0.73 6.64 0.87 5.74 0.67 5.61
4 0.98 2.2 0.85 5.09 0.85 4.58 0.63 5.13
H+ Al 1 0.91 3.86 0.89 16.13 0.89 5.98 0.79 18.71
(mmol, dm™~3) 2 0.81 18.04 0.78 19.06 0.77 20.77 0.78 25.25
3 0.92 12.92 0.90 15.36 0.70 17.42 0.80 19.25
4 0.98 5.98 0.97 7.82 0.86 15.37 0.86 23.00
SB 1 0.92 8.77 0.92 9.71 0.85 15.08 0.77 19.96
(mmol, dm™~3) 2 0.54 21.7 0.70 21.04 0.49 26.67 0.58 22.88
3 0.98 4.64 0.95 6.96 0.76 14.8 0.73 24.34
4 0.84 11.39 0.83 14.17 0.62 28.7 0.62 25.65
CEC 1 0.94 7.87 0.92 16.21 0.83 14.9 0.87 19.54
(mmol, dm %) 2 0.98 7.52 0.95 7.97 0.92 15.41 0.82 24.47
3 0.93 12.86 0.90 14.37 0.9 18.09 0.86 30.84
4 0.95 11.46 0.93 15.24 0.82 22.23 0.87 18.53
BS 1 0.97 3.99 0.88 7.22 0.68 11.43 0.79 10.34
(%) 2 0.72 10.86 0.73 11.16 0.7 11.73 0.56 13.56
3 0.83 8.6 0.83 8.61 0.67 11.17 0.62 15.50
4 0.76 9.6 0.81 9.17 0.7 12.27 0.71 11.34
AS 1 0.95 4.78 0.91 7.01 0.79 11.39 0.61 12.55
(%) 2 0.73 11.87 0.62 14.40 0.47 13.27 0.61 14.28
3 0.74 10.68 0.75 10.46 0.59 14.62 0.65 14.91
4 0.95 4.82 0.89 7.50 0.65 13.39 0.66 13.15
Sand 1 0.94 5.2 0.95 5.07 0.91 5.82 0.90 6.90
(%) 2 0.83 9.00 0.76 10.64 0.84 8.27 0.78 10.85
3 0.90 6.76 0.89 6.93 0.85 8.71 0.86 8.70
4 0.94 4.96 0.94 5.21 0.89 7.89 0.89 7.64
Silt 1 0.96 2.04 0.95 1.82 0.89 3.59 0.89 3.47
(%) 2 0.61 6.21 0.83 4.84 0.64 6.54 0.74 5.31
3 0.96 2.03 0.95 2.40 0.86 3.87 0.86 4.91
4 0.92 2.87 0.96 2.28 0.81 4.61 0.83 4.51
Clay 1 0.95 3.79 0.95 14.03 0.90 5.20 0.91 4.95
(%) 2 0.87 6.29 0.92 5.09 0.88 6.05 0.89 5.70
3 0.88 5.97 0.97 3.24 0.86 6.57 0.86 6.98
4 0.94 4.28 0.94 4.41 0.86 6.51 0.86 6.23

? Model generated considering as reference value the mean of all laboratories.
> Model generated considering as reference value the best laboratory based on the best Excellence Index.

laboratory 3), BS (25.2% laboratory 1), sand (21.2%, laboratory 1), and
silt (21.8%, laboratory 1).

Observing the inaccuracy calculated for sensors using the mean of
all laboratories (Fig. 2b), all attributes presented low inaccuracy re-
garding sensors, with the exception of P (inaccuracy of 47% for sensor
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3) (Fig. 2b). In the results for sensors using the best laboratory (Fig. 2c),
Al showed the highest inaccuracy (36.8%, sensor 4) followed by P
(34.7%, sensor 4), AS (26%, sensor 1), K (25%, sensor 1), Ca (23%,
sensor 4), and Mg (21.5%, sensor 4). The worst performance in general
was found for sensor 4.
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Fig. 1. Total number of penalized samples for each soil attribute obtained by the laboratory and sensor.

The imprecision index for sensors using mean of all laboratories was
high for three attributes: K, H + Al, and sand (Fig. 2e). For K, sensor 3
presented the poorest performance (78.6%). For H + Al, sensors 1, 2,
and 4 were the ones with highest imprecision indexes (71.1%, 72.4%,
and 72.6%, respectively), and for sand, sensors 1 and 4 (57.5%, and
69.6%, respectively). However, the lowest imprecision indices for the
sensors applying the best laboratory as reference value were found for
different attributes (Fig. 2f). In this case, P, Al, and AS showed high
imprecision. For P, sensor 3 and 4 achieved imprecision of 91.9% and
74.9%, respectively; for Al, sensor 4 had 71.8%; and for AS sensors 1
and 4 had 63.4% and 60.6% of imprecision, respectively (Fig. 2f). Be-
sides these attributes, K, Ca, and Mg presented imprecision above 40%.

The sensor 4 revealed high imprecision in average (30.9%) followed by
sensor 1 (23.3%).

In general, the imprecision index presented higher percentage
compared to inaccuracy because the imprecision formula takes into
consideration the CV values of each soil sample and the CVs were high
for some attributes, e.g. K, Ca, Mg, Al, H + AL, SB, CEC, and sand. As
for the inaccuracy, it considers the number of soil samples penalized
and this number was low. In summary, the soil attributes that were
classified with relatively high imprecision indices represent in-
compatibilities in the reproduction of values for the same sample. On
the other hand, the attributes that presented high inaccuracy indices
represent consequent uncertainties of measurements outside the

Inaccuracy
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Sand 40 K Sand 40 K Sand K
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BS Mg BS Mg BS Mg
CEC Al CEC Al CEC Al
SB H+ Al SB H+Al SB H+Al
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pH d) ) pH ]
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80 80 . 80
Silt P Silt P Silt P
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Sand 2 K Sand 2 K  Sand K
20 20
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BS Mg BS Mg BS Mg
CEC Al CEC Al CEC Al
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Fig. 2. Inaccuracy and Imprecision for laboratory (a and d), sensor using the mean of the reference values for all laboratories (b and e), and sensor using the reference
values from the best laboratory (c and f).
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Fig. 3. Excellence Index (EI) obtained by each laboratory and sensor. The colors represent the EI classification: A = 90%, B between 75% and 89%, C between 50%
and 74%, and D < 50% performed for each approach. In parenthesis are the average EI of all attributes.

interval of true value acceptance (Cantarella et al., 2016).

The majority of soil attributes analyzed presented high Els. In
general, the attributes with low quantity in soil (e.g. the ones measured
in mmol. dm ~3) are likely to present high percentage of inaccuracy and
imprecision. In fact, the laboratory measurements can increase rapidly
their uncertainty as the attribute concentrations decline (Rayment
et al., 2012). The EI for all laboratories is shown in Fig. 3a. Overall, few
attributes had results placed in concept C. The attributes Ca (72.2%)
and Mg (74.8%) presented the lowest EI (graded C) for laboratory 4,
and Al (73.6%) and AS (74.3%) for laboratory 1. The pH, OM, H + Al,
CEC, sand, and clay were the attributes classified as A for all labora-
tories (Fig. 3a). This type of inter-laboratory evaluation is an effective
measure for the determination of analytical accuracy. In general, the
laboratory 2 presented the lowest performance regarding the criteria
for classification of analytical results. The laboratory 3 reached the
highest EI (average EI of lab 3 = 86.7%) and the lowest inaccuracy and
imprecision indices.

Regarding the quantification methods using the sensors, in the first
sensor approach (Fig. 3b), the attributes P, K, H + Al, and sand reached
the lowest quality certification by IAC (grade C). The best classification
(grade A) was achieved to clay, pH, OM, CEC, and BS. In general, the
best performance was found for sensor 2 with an average EI of 86.6%.
On the other hand, the second sensor approach (Fig. 3c), using the best
laboratory as reference value to predict the attributes, showed poor
results for P, which was the only one that reached concept D for sensor
3 and concept C for sensor 4. Al and AS also presented concept C for
sensor 4. The attributes sand, silt, clay, pH, OM, CEC, and BS presented
EI well-classified, with the majority of them being within class A. For
these attributes, all sensors had a great performance reproducing a
reliable analytical value. The pH attribute presented the highest con-
cept (A) for all sensors in both approaches (Fig. 3b and c). This result is
due to the small pH variation of the samples, which leads to a low
standard deviation and CV values. In summary, sensor 2 presented the
best performance over all sensors and the sensor 4, the worst.

Considering the quality of the predictions resulting from the four
sensors, some attributes denoted inaccurate values. The errors of the
sensor predictions are mainly due to the use of inadequate laboratory
references, which do not represent precise and accurate values
(Soriano-Disla et al., 2014). Sensor 2 presented the best average EI,
indicating that the prediction performance of soil attributes modeling
applying sensor 2 leads to more accurate results. Overall, the criteria for
classification of analytical results showed that sand, silt, clay, pH, OM,
CEC, and BS can be determined by the spectroscopy technique with
high-quality outcome.

The reliability of the measurements in laboratories directly
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influences the quality of the models via sensor data. Bernardi et al.
(2002) assessed the analytical quality of soil fertility laboratories
methods in Brazil and revealed that in 2000, 63% of the 79 laboratories
obtained grades A or B, or reached the acceptable minimum require-
ment to get the authorized seal of Embrapa (regulatory agency of
Brazil). Also, they indicated that the human error may always be in-
tegrated to the measurement process. Analytical results are exposed to
inaccuracies and imprecisions mainly due to the lack of required quality
assurance programs in laboratories, and the inherent variable nature of
soil (Viscarra Rossel and McBratney, 1998). Thus, the analytical quality
of sensor-based models is rather dependent on the quality of traditional
laboratory data.

Although it is evident that all of the attributes results may vary from
sensor to sensor, the question remaining is: can the variations on dif-
ferent sensors influence the measurement performance? Observing the
errors assessment of each sensor, the sensor 2 had the best indices
(Fig. 3). However, all sensors presented good ability to reproduce si-
milar values for the same attribute, which is expressed in the inaccuracy
index. The similar EI classification assigned to the laboratories and
sensors demonstrates the sensors' ability to provide results within an
acceptable limit. Alternatively, Rosero-Vlasova et al. (2016) compared
the soil reflectance obtained with three laboratory setups, each one
with a different spectroscopy accessory (integrating sphere, illuminator
lamp and contact probe) and the results showed no statistical differ-
ences. Therefore, the variations in the spectral responses found here
were not substantial for sand, silt, clay, pH, OM, CEC, and BS attributes.

The general variations in reflectance output result from the inter-
action of different factors, which can be divided into two main cate-
gories: spectroradiometer domains (signal-to-noise ratio, spectral con-
figuration, detector performance, fore and fiber optic characteristics,
stray light contribution, warm-up time, and calibration quality) and
sampling domains (reference method and condition, homogeneity of
the sample, and operator input) (Pimstein et al., 2011). According to
Rayment et al. (2012), models involving Vis-NIR-SWIR reflectance
spectroscopy depend on the precision, accuracy, and robustness of the
reference laboratory analysis. In fact, these factors are prominent over
issues related to the sensor domain.

3.4. Lime recommendation (LR) variability

The LR values for each soil sample considering all laboratories and
sensors are shown in Fig. 4. In the LR for the soil sample n. 1 (row 1),
the laboratories 1 and 4, and sensors 1, 2, and 4 presented results
outside the confidence interval (red color). The LR for this soil sample
was considered low (average of 1.29tha™'). The total of samples
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Fig. 4. Lime recommendation in tons per hectare (tha™ D) analyzed by four laboratories and four sensors for 50 soil samples (numbers were left in sequence). *Red
color: represents discrepant results outside the confidence interval (o = 0.05), Blue color: represents the acceptable results of lime recommendation. (For inter-
pretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

outside the confidence interval for laboratories 1, 2, 3, and 4 were 21,
4, 11, and 29, respectively. The results of CEC and BS for laboratory 4
were the least accurate and, therefore, influenced the calculation of the
LR, which led to a large number of penalized samples. Particularly in
the laboratory 4, 58% of soil samples analyzed presented a result out-
side of the confidence interval.

In the sensors applying the reference value of mean of all labora-
tories, sensor 1 showed the largest number of samples outside the
confidence interval (36), followed by sensor 2 (10), sensor 3 (8), and
sensor 4 (3) (Fig. 4). For sensors applying the best laboratory as re-
ference value, the LR results were similar, but had a larger number of
samples outside the confidence interval for sensors 2, 3, and 4. Only
sensor 1 presented less samples outside the confidence interval (20)
compared to the same sensor using the mean of all laboratories (36).
However, this sensor presented the worst accuracy for LR in both pre-
diction approaches considered.
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Uncertainties of LR may undermine the productive potential of
agriculture. The LR results showed a significant variability in relation to
the confidence interval. This discrepancy is due to the fact that the CEC
and BS values presented elevated ranges, resulting in inaccurate LR.
Overall, 67.5% of LR for all soil samples determined by the laboratories
were within the confidence interval. Similar results were described in
Cantarella et al. (2006), in which 84 commercial laboratories were
evaluated, and 74% of the LR was within acceptable limits. The con-
sequences of errors in lime application will lead to direct profit losses
and will also influence the nutrient availability, which may be difficult
to fix if the rates are higher than those actually required (Cantarella
et al., 2006).

Considering the total number of samples outside the confidence
interval (57 samples penalized), the sensors using the mean reference
value of all laboratories revealed the best performance with only 28%
of samples penalized (Fig. 4). This result shows the potential
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Fig. 5. Correlation between lime recommendation (t ha™') of laboratory 2 and sensor 4.

application of reflectance spectroscopy in the LR. The under- or over-
application of lime influence the absorption of micronutrients, and most
important, increase the environmental footprint of the agricultural ac-
tivity. Tekin et al. (2013) explored the potential of the on-line Vis-NIR-
SWIR sensor for pH prediction and derived meaningful lime re-
commendations.

A more detailed assessment comparing the LR results of the sensors
and laboratories was performed by calculating the correlation coeffi-
cient of the best laboratory and sensor results (Fig. 5). Considering that
the best LR result was achieved for laboratory 2 and sensor 4, the
correlation coefficient between both was strongly positive (r = 0.98).
The majority of LR was between 0 and 5tha~! and few samples pre-
sented elevated LR values. This outcome indicated that the LR derived
from proximal sensor analysis can be used as an efficient method, since
it presented a high correlation with the laboratory result.

The use of sensors is a promising technique with high potential for
meeting the soil monitoring requirements. Applying Vis-NIR-SWIR
spectroscopy to search the viability of rapidly assessing the essential
quality indices of commercial organic fertilizers, Wang et al. (2014)
reached accurate predictions for pH, concluding that the reflectance
spectroscopy can be used as a valuable industrial and research tool to
rapidly and accurately assess the quality of commercial organic ferti-
lizers.

The demand to develop technologies that maximize the fertilizer
efficiency in agroecosystems is increasing. The application of fertilizer,
lime, and other soil amendments inputs requires a precise management.
Soil reflectance spectroscopy has shown capability in providing a rapid
assessment of various physical and chemical soil attributes. Soil mea-
surements through sensors can be performed in laboratory conditions or
directly in the field.

In this context, hybrid laboratories must be developed in order to
efficiently maximize the use of agricultural inputs. The hybrid labora-
tory analysis works as follows: spectral information of a 100% of the

120

soil samples is obtained and 20% of the samples have their attributes
determined by wet chemical analysis. These samples will be used to
calibrate models for prediction of soil attributes. The 80% remaining
samples will have their attributes estimated by the calibrated model.
The term hybrid refers to a small part of the samples being analyzed by
the traditional method and most of them being predicted by reflectance
spectroscopy. In fact, the ratio 20% and 80% is an estimate and will
depend on other factors such as the total sample size, the total cost of
the analyses and the accuracy of the prediction model. This approach
allows information to be obtained in a faster and cheaper way and re-
duces the use of toxic compounds in traditional analyses. Hybrid la-
boratories analyses will have a great impact on how to manage the soil,
as by generating soil information rapidly and at low costs, they will
enable farmers to have better access to such information.

4. Conclusion

It was possible to quantify the degree of acceptable uncertainties in
the determinations of soil attributes with different laboratories and
sensors. The performance of the predictive models was influenced by
the analytical precision and accuracy of the reference laboratories.
Overall, predictions of soil attributes using different sensors showed
high reproducibility, which is associated with the analytical capacity of
the reflectance spectroscopy technique. The quality of the spectral
prediction models led to great results for sand, silt, clay, OM, CEC, K,
and pH.

The classification of analytical performance presented good results
for sand, silt, clay, pH, OM, CEC, and BS attributes, which are important
for agricultural production. The soil attributes are used for the diag-
nosis of soil fertility and for determining the rates of application of lime,
fertilizer, and others nutrient managements. The LR derived from
spectral analysis can be used as an efficient method, since it presented a
high correlation with the laboratory result. Thus, variation in the LR
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has economic and environmental implications. For example, the same
sample may show a variation of the LR from 1 to 2tha™?, i.e. 100%
increase, doubling the cost.

The Hybrid Laboratory Analysis is dependent of the quality (accu-
racy/precision) of traditional analysis. On the other hand, sensors can
improve and optimize traditional laboratory operations. The Vis-NIR-
SWIR reflectance spectroscopy technique can complement the tradi-
tional methods, reducing costs, demanded time, and the use of harmful
toxic elements for the characterization of soil attributes.
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