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ARTICLE INFO ABSTRACT

It is impossible to make pedological maps without understanding subsurface attributes. Several strategies can be used
for soil mapping, from a tacit knowledge to mathematical modeling. However, there are still gaps in knowledge
regarding how to optimize subsurface mapping. This work aimed to quantify subsurface soil attributes using satellite
spectral reflectance and geographically weighted regression (GWR) techniques. The study was carried out in Sdo Paulo,
Brazil, in an area spanning 47,882 ha. Multitemporal satellite images (Landsat-5) were initially processed in order to
retrieve spectral reflectance from the bare soil surface. Based on a toposequence method, 328 points were then dis-
tributed across the area (at depths between 0 and 20 cm and 80 and 100 cm) and analyzed for their soil chemical and
physical attributes (including the reflectance spectra (400 to 2500 nm)) in the laboratory. We achieved 67.72% of bare
soil for the whole study area, with the remaining 32.28% of the unmapped surface being filled by kriging interpolation.
All 328 samples were modeled using surface (Landsat-5 TM spectral reflectance) and subsurface (acquired in the
laboratory) data, reaching up to 0.72 R3;. The correlation between the spectra of both depths was significant and the
soil attributes prediction reached an Rédj of validation above 0.6 for clay, hue, value, and chroma at 0-20 and
80-100 cm depths. The satellite soil surface reflectance allowed the estimation of soil subsurface attributes. These
results demonstrate that diagnostic soil attributes can be quantified based on spectral pedotransfer (SPEDO) functions to
assist digital soil mapping and soil monitoring. Despite our efforts to determine soil subsurface properties using digital
soil mapping approach, this task still need considerable refinement. Thus, research must continue to aggregate out-
comes from other techniques.
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1. Introduction

Classical soil mapping fundamentally depends on the surveyor's
knowledge of the relationships between soil-forming factors (Jenny, 1941),
and is based on standard sampling densities to boost its efficiency. The
surveyor's criteria are not precise due to the absence of a clear modeling
method (Miller and Schaetzl, 2016). An initial solution to this arose when
McBratney et al. (2003) introduced the concept of Digital Soil Mapping

(DSM) to integrate advanced mathematical techniques with classical soil
survey methods. However, an important component of all soil classification
systems is the diagnostic horizons (Bockheim et al., 2014; IUSS Working
Group WRB, 2015; Soil Survey Staff, 2014), and it is impossible to make a
pedological map without understanding the subsurface attributes (diag-
nostic horizons). Soil property data from the subsurface is directly related to
diagnostic horizons, which drives many soil classification systems (IUSS
Working Group WRB, 2015; Soil Survey Staff, 2014).

Abbreviations: SPEDO, spectral pedotransfer functions; GWR, geographically weighted regression; MLR, multiple linear regression; GEOS3, geospatial soil sensing
system; SYSI, synthetic soil image; TM, thematic mapper sensor of Landsat 5; KGSYSI, a bare soil image generated by kriging the SYSI values; KGOSYSI, a bare soil
image combining the original SYSI and kriging estimates for the non-filled gaps; R, Munsell's red color; YR, Munsell's red-yellow color; Y, Munsell's yellow color; OM,
organic matter; CEC, cation exchange capacity; CA, clay activity; Ta, high activity clays; Tb, low activity clays; V%, base saturation; BS, sum of bases; m%, aluminum
saturation; Vis, visible region of the electromagnetic spectrum; NIR, near infrared region of the electromagnetic spectrum; SWIR, shortwave infrared of the elec-
tromagnetic spectrum; BSSIKG, estimated subsurface spectral reflectance from KGSISY; BSSIKGO, estimated subsurface spectral reflectance from KGOSYSI; RMSE,
root mean square error; R2, coefficient of determination; RPIQ, ratio of performance to interquartile range; RPD, ratio of performance to deviation; RGB, red, green

and blue channels for image composites
* Corresponding author.
E-mail address: jamdemat@usp.br (J.A.M. Dematté).

https://doi.org/10.1016/j.geoderma.2019.01.025

Received 7 December 2017; Received in revised form 24 September 2018; Accepted 8 January 2019

Available online 27 February 2019
0016-7061/ © 2019 Elsevier B.V. All rights reserved.


http://www.sciencedirect.com/science/journal/00167061
https://www.elsevier.com/locate/geoderma
https://doi.org/10.1016/j.geoderma.2019.01.025
https://doi.org/10.1016/j.geoderma.2019.01.025
mailto:jamdemat@usp.br
https://doi.org/10.1016/j.geoderma.2019.01.025
http://crossmark.crossref.org/dialog/?doi=10.1016/j.geoderma.2019.01.025&domain=pdf

W.d.S. Mendes, et al.

Pedological surveys at a large scale are essential, but high costs and
lack of manpower are serious constraints. DSM can be used to mitigate
the problems, as indicated by McBratney et al. (2003). DSM utilizes
field, laboratory, and soil information and interprets relationships by
using quantitative methods to predict patterns at various temporal and
spatial scales (Grunwald, 2010). These methods estimate characteristics
at unknown locations using known patterns, correlated with satellite
spectra and/or relief data, using multivariate techniques. Therefore,
soil attributes can be estimated from satellite images and/or relief data
(Franceschini et al., 2015; Gerighausen et al., 2012; Moore et al., 1993;
Mulder et al., 2011; Odeh et al., 2006).

The spectral library is another important tool and is defined as a dataset
of soil samples with their respective laboratory and spectral analyses attri-
butes (Viscarra Rossel et al., 2016a, 2016b). For a soil sample, the spectrum
obtained can provide many properties using empirical modeling. This
methodology has been successfully used by several researchers (Khayamim
et al., 2015; Viscarra Rossel et al., 2010a, 2010b). Additionally, soil map-
ping requires many samples to be taken in order to estimate their attributes
and these will be distributed across the landscape, to allow estimation of the
spatial variability of the soil properties.

Understanding the role of spatial variations in surface and subsur-
face soil is essential for decision-making in the fields of sustainable
agriculture and environmental monitoring. Agbu et al. (1990) demon-
strated the correlation between surface and subsurface soil properties
by showing spectral associations between underlying layers and the
pedogenetic influence of subsurface properties. Galvao et al. (1997)
investigated the interaction between the subsurface and surface prop-
erties of tropical soils from Brazil using spectroscopy. The authors
analyzed the color variations and spectral reflectance, in addition to
their association with the physicochemical soil constituents.

Some aspects of this approach still need to be explored. Dematté et al.
(2009) observed that surface patterns obtained by satellite could dis-
criminate many soil classes. In most cases, only surface attributes have been
predicted in studies using satellite images (Dematté et al., 2016; Diek et al.,
2017; Shabou et al., 2015) and/or relief (Vasques et al., 2016; Wilford et al.,
2016). Subsurface soil information can provide data on things such as or-
ganic matter content, cation exchange capacity, soil depth, soil drainage
etc., which are imperative for root development and other soil functions. A
recent study by Ordoéniez et al. (2018) exemplified the importance of un-
derstanding subsurface soil attributes for crop development and maximum
yield. The authors found that the maximum depth for root development of
maize and soybean ranges from 89 to 157 cm.

Since only 5% of Brazil has been mapped at the 1:100,000 scale
(Polidoro et al., 2016), it is impossible to perform detailed soil mapping
using only traditional field-based and manpower-heavy methods. It is im-
perative that we shed light on the ways to rapidly estimate subsurface soil
attributes. Thus, our main objective was to quantify subsurface soil attri-
butes using soil surface spectral pedotransfer functions, calibrated by sa-
tellite information. The hypothesis of the present work is that there is a
relationship between surface and subsurface soil properties, as observed by
field experience. Even though the surface information is typically associated
with the top 3 cm soil layer, subsurface soil spectra can be linked to the
surface spectra using a “spectral pedotransfer function” (SPEDO). The
concept illustrated here is an extension of traditional pedotransfer functions
using spectral information. This approach has the potential to obtain sub-
surface information for digital soil mapping.

2. Material and methods
2.1. Study site, sampling points, and laboratory spectra

The study site is in a region of the municipality of Rio das Pedras, Sdo
Paulo State, Brazil, and covers an area of 47,882 ha. The altitude ranges
from 500 to 700 m asl (Fig. 1). The geology of the region is complex (Pir-
acicaba SF 23 - M 300 map, published at a scale 1:100,000 (Mezzalira,
1966)).
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The following strata can be observed:

Ct - Carboniferous, Tubardo Group (composed of sandstones, silt-
stones, varvites, tillites and conglomerates);

Jbp - Jurassic, Botucatu and Pirambdia Formations (comprised of
sandstone, siltstones and shales);

Ksg - Cretaceous, Serra Geral Formation (consisting of basalt,
sandstone, inter-trap and diabasium); Pc - Permian, Corumbatai
Formation (consisting of siltstones, shales, limestone and flint); and.
Pi - Permian, Irati Formation (consisting of shales, pyr-
obetuminosite, dolomite and siltite (see Fig. 1).

At this site, 328 points were allocated based on the toposequence
method and soil samples were collected at depths of 0-20 cm and
80-100 cm. The samples were analyzed by conventional methods for
chemical and granulometric estimates (Donagemma et al., 2011). In
addition, reflectance spectra were acquired using the Fieldspec Pro
(Analytical Spectral Devices, Boulder, Colorado, USA) in the laboratory,
according to the methodology described by Terra et al. (2015). In this
case, reflectance data were obtained with a spectral resolution of 1 nm,
from 350 to 1100 nm, and 2 nm, from 1100 to 2500 nm. Samples were
placed on petri dishes and the sensor was positioned vertically, 8 cm
from the platform. The sensor detected the energy reflected from two
50-W halogen lamps, positioned 35 cm from the platform with a zenith
angle of 30°. The reflectance of a white Spectralon reference plate was
measured at the beginning of each set of measurements.

2.2. Bare soil image

A spectral reflectance composite of bare soil retrieved from the
multitemporal Landsat-5 TM (Thematic Mapper) archive was used; this
was produced by the GEOS3 (Geospatial Soil Sensing System) described
in Dematté et al. (2018). Images from 1984 to 2011 and between July
and September were processed to produce a bare soil composite, al-
lowing a representation of 67.72% of the bare soil surface of the area.
The acquisition dates of the images mentioned above were chosen be-
cause they relate to the dry season in the region, which minimized the
influence of moisture on the soil surface. The period is also associated
with reduced cloud coverage and a higher incidence of bare soil areas.

A brief description of the GEOS3 method is as follows (Fig. 2): (1)
creation of a database of atmospherically corrected, surface reflectance
images; (2) generation of spectral indices; (3) definition of spectral
indices thresholds to separate bare soil from other land cover patterns;
(4) extraction of bare soil areas from the database and calculation of an
average soil composite. Afterwards, a single multispectral image was
obtained and designated as the Synthetic Soil Image (SYSI).

The SYSI still presented large gaps in places where no bare soil was
found in the multitemporal archive. Thus, to fill these gaps, we ex-
tracted spectral values of SYSI using a 200 x 200 m grid and then in-
terpolated the multispectral reflectance by the geostatistical kriging
method (Fig. 2). The grid spacing (200 x 200 m) was used because of
the computer processing limitations associated with the size of the area.
The Landsat surface reflectance has a known 30 x 30 m pixel resolu-
tion, but the size of the mapped area limited the grid spacing to the
same resolution as the Landsat images. The kriging estimate was de-
nominated as Kriging from SYSI (KGSYSI). A combined SYSI was pro-
duced by combining the original SYSI with the kriging estimates, pre-
serving the original values in 67% of the mapped area and assigning
interpolated estimates for the gaps. This aggregated composite was
denominated as SYSI overlapped with KGSYSI (KGOSYSI) (Fig. 2).

2.3. Soil attributes

We chose the following soil attributes that are important when
classifying soils:
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Fig. 1. Location of the study area, distribution of sampling points, and geology of the region combined with a digital elevation model from the Shuttle Radar
Topographic Mission 30 m. Ct - Carboniferous, Tubardo Group; Jbp - Jurassic, Botucatu Formation and Pirambéia Formation; Ksg - Cretaceous, Serra Geral
Formation; Pc - Permian, Corumbatai Formation, and Pi - Permian, Irati Formation (Mezzalira, 1966).

i.

iii.

iv.

Munsell soil color: represented by the attribute's hue, value, and
chroma, between 80 and 100 cm depth (near the diagnostic hor-
izon). This can be related to soil classes such as Ferralsols, Nitosols,
and Lixisols (IUSS Working Group WRB, 2015). The hue attribute
was transformed into a numerical value, where R = 0, YR = 10, and
Y = 20.

. Clay content for soil texture gradient: defined by the ratio between

clay content in the subsurface (80-100 cm) and surface (0-20 cm)
layers (dos Santos et al., 2013). This attribute is a key to de-
termining the type of B horizon present. Additionally, the soil tex-
ture gradient was calculated from different surface clay classes ac-
cording to dos Santos et al. (2013).

Organic matter (OM): the surface organic matter is important when
classifying Organosols (Histosols) (OM = 13%) and other soils with
a chernozemic A horizon (Organic carbon > 6gkg™' and V
% > 65) (dos Santos et al., 2013).

Cation exchange capacity (CEC): this attribute is important when
determining high (Ta) and low (Tb) clay activity (CA). Clay activity
is calculated by

CA = (1000CEC)/clay

where CEC is given in cmolc kg~ ! and the clay content is given in g
kg~ !. CEC is classified as Ta if the value is greater than or equal to 27

cmole kg_1 (dos Santos et al., 2013).

v. Base saturation (V%): this is used to determine areas with a eu-

trophic (V% = 50) or dystrophic (V% < 50) character. It is essen-
tial to identifying the chernozemic A horizon (V% > 65, Organic
Carbon > 6gkg™) and high, relative aluminum content
(Al = 4cmolckg ™!, CA = 20 cmolckg ™!, m% = 50 or V% < 50)
and is calculated by

V% = 100BS/CEC

where the sum of bases (BS) and CEC are given in cmolc kg_1 (dos
Santos et al., 2013).

vi. Aluminum saturation (m%): this is a key to determining areas with

high relative aluminum contents (Al = 4 cmolckg™?,
CA = 20 cmolckg™, and m% = 50 or V% < 50) and classifying
Nitosols (dos Santos et al., 2013). The calculation of m% is given by

m% = 100Al/BS + Al

where BS and Al are in cmolc kg’l (dos Santos et al., 2013).
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Fig. 2. Sequence of processing steps to generate bare soil composites for digital soil mapping. The Synthetic Soil Image (SYSI) is derived from the Geospatial Soil

Sensing System (Dematté et al., 2018).

vii. Aluminum (Al): this is relevant to defining areas with high relative
aluminum content (Al = 4 cmolckg ™!, CA = 20 cmolckg™!, and
m% = 50 or V% < 50) and identifying Nitosols (dos Santos et al.,
2013).

2.4. Calibration of multivariate models

The calibration of multivariate models was performed using the
Geographically Weighted Regression (GWR) and Multiple Linear
Regression (MLR) methods. These methods are included in the Spatial
and Geostatistics package of SAGA GIS software, version 2.1.4 (Conrad
et al., 2015). We have tested the MLR because it is the most common
and simple method used for multivariate calibrations, although it does
not consider spatial dependence. We also used GWR for comparative

purposes since it accounts for spatial dependence.

MLR correlates a given attribute with multiple independent vari-
ables or covariates, which can be satellite image bands and/or relief
attributes similar to those developed by Odeh et al. (2006). MLR can be
represented by:

Y, =ao+ E QX + &,
k

where y; represents the predicted attribute at point i, ay represents the
multiplying coefficient related to independent variable xy, and ¢; is the
error of the prediction estimation at point i (Fotheringham et al., 1998).

The GWR is an alternative to MLR, since it considers the position
and spatial relationships among samples by determining distance
weights, which are considered for the calibration (Fotheringham et al.,
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Fig. 3. Relationship between surface and subsurface spectral reflectance. Pattern with field confirmation (a); Unknown pattern of subsurface (b).

1998). Basically, the GWR equation is an extension of the MLR equa-
tion, with the added information of geographical location:

Yi=ao+ Z ai (Wi, V)X + &,
k

where (u;, v;) represent the coordinates of point i in space, ax(u;, v;) is the
geographically weighted continuous function ax(u,v) of point i, xy re-
presents the independent variable k of point i, and ¢; is the error of the
prediction estimate at point i (Fotheringham et al., 1998).

263 of the sampling points (80%) were used to calibrate the models
and 65 points (20%) were chosen for the validation at random (Fig. 1).
Subsequently, we spatialized the soil attributes using the GWR and MLR
in the surface and subsurface layers by using the covariate layers.

2.5. Subsurface spectral reflectance

The laboratory spectra of the subsurface soil were convolved into
the Landsat 5 Thematic Mapper (TM) spectral bands using a Gaussian

function (Dematté et al., 2018). This step is performed by using a
weighted average resampling approach, generating a multispectral
dataset from the spectral data. Multispectral TM bands correspond to
the visible, near infrared and shortwave infrared spectral regions: band
1 (450-520 nm); band 2 (520-600 nm); band 3 (630-690 nm); band 4
(760-900 nm); band 5 (1550-1750 nm) and; band 7 (2080-2350 nm).

Subsurface reflectance was estimated and spatialized from the as-
sociation of the convolved laboratory spectra and the surface spectra of
SYSI (Fig. 3a, Fig. 4). The results were the denominated Bare Subsurface
Soil Image from both KGSYSI (BSSIKG) and KGOSYSI (BSSIKGO). The
estimated subsurface spectral reflectance was tested as a covariate, in
order to predict soil attributes at 80-100 cm depth. Furthermore, the
ability of the surface reflectance of SYSI to estimate subsurface soil
attributes was also tested, in addition to the spectral reflectance pat-
terns of the subsurface (Fig. 3b).
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Table 1
Prediction and validation of subsurface reflectance (80 to 100 cm) based on surface reflectance from satellite image data and multivariate statistical methods.

Subsurface band Calibration method Covariate source Covariates (surface bands) Rgdj RMSE RPIQ
Band 1 GWR KGOSYSI Band2 + Band3 + Band4 + Band5 0.62 0.02 2.33
KGSYSI 0.60 0.02 2.22

MRL KGOSYSI 0.46 0.03 1.96

KGSYSI 0.44 0.03 1.92

Band 2 GWR KGOSYSI Band2 + Band3 + Band4 + Band5 0.72 0.03 2.70
KGSYSI 0.66 0.03 2.45

MRL KGOSYSI 0.60 0.04 2.27

KGSYSI 0.58 0.04 2.18

Band 3 GWR KGOSYSI Band2 + Band3 + Band4 + Band5 + Band7 0.69 0.04 2.35
KGSYSI 0.64 0.05 2.20

MRL KGOSYSI 0.63 0.05 2.11

KGSYSI 0.62 0.05 2.09

Band 4 GWR KGOSYSI Band3 + Band4 + Band5 + Band7 0.69 0.05 2.31
KGSYSI 0.68 0.05 2.30

MRL KGOSYSI 0.61 0.07 1.90

KGSYSI 0.58 0.06 1.94

Band 5 GWR KGOSYSI Band5 + Band7 0.65 0.12 1.67
KGSYSI 0.69 0.11 1.77

MRL KGOSYSI 0.63 0.13 1.60

KGSYSI 0.67 0.12 1.68

Band 7 GWR KGOSYSI Band5 + Band7 0.64 0.06 2.39
KGSYSI 0.67 0.05 2.49

MRL KGOSYSI 0.64 0.06 2.34

KGSYSI 0.66 0.06 2.47

MRL: Multiple linear regression; GWR: Geographically weighted regression; SYSI: Synthetic soil image; KGSYSI: SYSI generated by kriging estimates; KGOSYSI: SYSI
generated by combining original SYSI and kriging estimates for only the non-filled gaps; Ra;: Adjusted coefficient of determination at 0.05 significance; RMSE: Root

mean square error; RPIQ: Ratio of performance to interquartile range.
2.6. Soil attributes spatialization

Fig. 4 illustrates the workflow where soil attributes are predicted for
two depths (two soil layers) with the addition of relief attributes as
covariates. Based on model performance, the covariates selected for
calibration with the GWR and MLR, varied for each soil attribute. For
soil surface attributes, we tested the KGSYSI or KGOSYSI bands. For the
subsurface layer, the covariates were primarily the subsurface estimates
from both KGSYSI and KGOSYSI but, in some cases, surface reflectance
was tested when the predictions outperformed the subsurface covari-
ates. Additionally, for some subsurface attributes, terrain attributes
were included in the calibration models. In Section 3, we present the
best-performing associations of covariates for predicting and validating
subsurface reflectance (80-100 cm) based on surface reflectance from
satellite image data.

We refer to this process as the “Spectral Pedotransfer Function
(SPEDO)”. The SPEDO consists of two principles: (i) the calibration of
pedotransfer functions with synthetic soil images (SYSI), which are
based on multitemporal satellite spectral reflectance (hence the term
“Spectral” in SPEDO); and (ii) the application of the resulting products
for digital soil mapping. When the spectral reflectance of the soil sur-
face is retrieved, the subsurface layer data can be calibrated with sur-
face information based on empirical relationships.

2.7. Validation of soil attribute estimates

Soil attributes from the surface and subsurface were validated for
20% of the samples (Fig. 1). We used the root mean-squared error
(RMSE), the adjusted coefficient of determination (dej) and the ratio of
performance to interquartile range (RPIQ) values (Bellon-Maurel et al.,
2010) to compare all models and each soil attribute. High values of R2;
help to explain the predictors, whereas low values of RMSE denote good
performance. The RPIQ values indicate the factors affecting prediction
accuracy of non-available data (Keskin and Grunwald, 2018).

275

3. Results and discussion
3.1. Relationship between surface and subsurface spectral data

The GEOS3 retrieved 67.72% bare soil coverage in the study area
from Landsat-5 TM multitemporal satellite images, the remaining
32.28% of the area being filled by kriging estimates (KGSYSI). Thus,
bare soil spectra were generated to achieve 100% coverage and used to
test the covariates for attributes mapping.

Surface soil information can be associated with subsurface data,
allowing surface spectra to predict the subsurface when the patterns are
established through calibration. This is the first step in determining
properties from both layers (Fig. 3). The convolved subsurface of
Landsat-5 TM bands presented strong results, reaching Rﬁdj between
0.60 and 0.72 and RPIQ between 2.0 and 2.5 (Table 1). However, the
convolved spectra of Band 1 (using MLR) was less reliable
(Rgdj < 0.50) and, overall, GWR was slightly better than MLR for the
same covariates.

Prediction of the subsurface convolved spectra of Band 1, Band 2,
Band 3, and Band 4 from Landsat-5 TM was better using independent
variables from KGOSYSI, while prediction of Band 5 and Band 7 was
better when using independent variables from KGSYSI (Table 1). There
have been many studies that have used laboratory and hyperspectral
(LieB et al., 2012; Nanni and Dematté, 2006; Ogen et al., 2017; Regmi
and Rasmussen, 2018; Rizzo et al., 2016; Stevens et al., 2008) to assess
the subsurface soil properties. These studies are based on field ob-
servations of surface and subsurface soil data. However, there is scarce
information on subsurface reflectance prediction from surface in-
formation, as is proposed here.

3.2. Spatialization of soil attributes

The prediction of surface clay content by satellite spectra resulted in
an Rgdj between 0.50 and 0.75 with an RPIQ between 2.0 and 2.5, with
the best independent variables being Bands 7, 5, 4, 3 and 2 (Table 2). In
this case, multispectral bands from KGSYSI performed better than
KGOSYSI. Comparing GWR with MLR as a predictive method for clay
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Table 2
Prediction of surface soil attributes (0 to 20 cm) by multivariate statistical methods.

Soil attribute Calibration method Covariate source Covariates (surface bands) Rgdj RMSE RPIQ
Clay1 (g kg’l) GWR KGSYSI Band2 + Band3 + Band4 + Band5 + Band7 0.62 82.87 2.25
Clay2 (gkg™h) KGOSYSI 0.53 91.88 2.03
Clay3 (gkg™h) MRL KGSYSI 0.54 91.54 2.04
Clay4 (gkg™h) KGOSYSI 0.56 88.83 2.10
O.M. (gkg™ 1) GWR KGSYSI Clayl + Band7 0.38 7.13 1.96

KGOSYSI Clay2 + Band7 0.29 7.41 1.89

MRL KGSYSI Clay3 + Band7 0.25 7.68 1.82

KGOSYSI Clay4 + Band7 0.21 7.81 1.79

V% GWR KGSYSI Band2 + Band3 + Band4 + Band5 0.31 14.83 1.62
KGOSYSI 0.30 14.95 1.61

MRL KGSYSI 0.20 16.04 1.50

KGOSYSI 0.24 15.82 1.52

MRL: Multiple linear regression; GWR: Geographically weighted regression; SYSI: Synthetic soil image; KGSYSI: SYSI generated by kriging estimates; KGOSYSI: SYSI

generated by combining original SYSI and kriging estimates for only the non-filled gaps; R3q;:

mean square error; RPIQ: Ratio of performance to interquartile range.

estimation, GWR presented a better performance. This is evidence of
the importance of considering spatial relationships between sampling
locations for predictive purposes.

The results obtained for surface clay are in agreement with
Steinberg et al. (2016) using an airborne hyperspectral sensor (by
PLSR). It is also in agreement with Shabou et al. (2015), where Rﬁdj of
0.65 for Landsat-5 TM (Band 5 and Band 7 index). The soil surface
chemical attributes, such as organic matter (OM) and base saturation (V
%), presented unreliable results (Rﬁdj < 0.50 and RPIQ between 1.5
and 2.0, see Table 2). Low dej values for these attributes were also
observed by Bhering et al. (2016). However, low RMSE values were
achieved and the prediction were used to separate eutrophic/dys-
trophic (V% = 50) and organosols (OM > 13%). Comparing GWR
with MLR, a relative superiority of GWR was observed in the predic-
tions (Table 2).

The improved prediction performance of independent variables
using KGSYSI bands can be explained by the smooth transitions of the
reflectance values (Fig. 5, RGB 543 composite), whereas KGOSYSI
presented more abrupt transitions (Fig. 5). These transitions occur due
to multitemporal variances in reflectance, which may occur due to the

KGSYSI

KGOSYSI

24 Adjusted coefficient of determination at 0.05 significance; RMSE: Root

presence of noise and are not naturally representative of the spatial
changes of the soil attributes. The kriging smoothing effect, as reported
by da Rocha et al. (2007), can correct some of these multitemporal
variations, as it overestimates values near to the minimum values and
underestimates values near to the maximum values. However, it can
also impact the spatial predictions (Yamamoto, 2005).

In relation to the subsurface soil attributes, clay presented good
estimates (Table 3), which were in agreement with Steinberg et al.
(2016). Among the independent variables and prediction methods, the
best result was for KGSYSI using GWR (Rﬁdj = 0.63). In this case, sur-
face spectral information presented a higher correlation with subsur-
face clay. This can be explained by the similar spectral signatures along
a profile of the same soil class, as observed by Ben-Dor et al. (2008) and
Aratjo et al. (2015). Estimating clay content by the MLR method from
KGOSYSI was unreliable (Rf,dj < 0.50). The predictions also presented
low values (Rﬁdj < 0.50 and RPIQ < 2.0) for chemical attributes (Al,
V%, m% and CEC, see Table 2). For the prediction of these attributes,
the GWR method was superior to MLR (Table 3).

Hue estimates were obtained with Rﬁdj of 0.57 and RPIQ of 2.07,
while value and chroma with Rﬁdj of 0.74 (RIPQ = 3.04) and dej of

Abrupt transition in KGOSYSI
reflectance values and smoothed by
kriging effect in KGSYSI generation,

that influences the prediction of soil

attributes.

Fig. 5. Subset of the KGSYSI and KGOSYSI to demonstrate transitional patterns of surface reflectance values (false-color composite RGB 543). SYSI: Synthetic Soil
Image; KGSYSI: SYSI generated by kriging estimates; KGOSYSI: SYSI generated by combining original SYSI and kriging estimates only for the non-filled gaps.
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Table 3
Prediction of subsurface soil attributes (80 to 100 cm) by multivariate statistical methods.

Soil attribute Prediction method Covariates source Covariates Rﬁdj RMSE RPIQ
Clayl (gkg™") GWR KGSYSI Band7, Band5, and Band4 0.63 88.24 2.68
Clay2 (gkg™ ") KGOSYSI 0.54 101.43 2.33
Clay3 (gkg™") MRL KGSYSI 0.55 97.66 2.42
Clay4 (gkg™1) KGOSYSI 0.43 112.85 2.09
V%1 GWR KGSYSI and terrain attributes TPI, SLH, VLD, SAR, Band7, and Band4 0.12 20.42 1.75
V%2 KGOSYSI and terrain attributes 0.14 20.19 1.77
V%3 MRL KGSYSI and terrain attributes 0.05 21.09 1.70
V%4 KGOSYSI and terrain attributes 0.07 20.85 1.71
CEC1 (mmolc/dm®) GWR Subsurface spectra from KGSYSI Band5, Band7, and Clay1 0.35 69.82 0.89
CEC2 (mmolc/dm®) Subsurface spectra from KGOSYSI Band5, Band7, and Clay2 0.29 71.73 0.87
CEC3 (mmolc/dm®) GWR Subsurface spectra from KGSYSI Band5, Band7, and Clay3 0.06 83.26 0.75
CEC4 (mmolc/dm®) Subsurface spectra from KGOSYSI Band5, Band7, and Clay4 0.02 84.37 0.74
m%1 GWR Subsurface spectra from KGSYSI Band7, Band5, Band4, and V%1 0.27 17.01 1.35
m%2 Subsurface spectra from KGOSYSI Band7, Band5, Band4, and V%2 0.23 17.47 1.32
m%3 MRL Subsurface spectra from KGSYSI Band7, Band5, Band4, and V%3 0.11 19.16 1.20
m%4 Subsurface spectra from KGOSYSI Band7, Band5, Band4, and V%4 0.17 18.31 1.26
Al (mmolc/dm?) GWR Subsurface spectra from KGSYSI CEC1, V%1, and m%]1 0.32 11.95 1.51
Subsurface spectra from KGOSYSI CEC2 V%2, and m%2 0.21 13.22 1.36

MRL Subsurface spectra from KGSYSI CEC3, V%3, and m%3 0.36 11.73 1.53

Subsurface spectra from KGOSYSI CEC4, V%4, and m%4 0.07 14.56 1.24

Chroma GWR Subsurface spectra from KGOSYSI Band1, Band2, and Band3 0.63 0.52 2.78
Subsurface spectra from KGSYSI 0.43 0.65 2.24

MRL Subsurface spectra from KGOSYSI 0.67 0.51 2.87

Subsurface spectra from KGSYSI 0.34 0.69 2.09

Hue GWR Subsurface spectra from KGOSYSI Bandl, Band2, Band3, and Band4 0.57 1.28 2.07
Subsurface spectra from KGSYSI 0.49 1.40 1.90

MRL Subsurface spectra from KGOSYSI 0.45 1.43 1.86

Subsurface spectra from KGSYSI 0.30 1.60 1.66

Value GWR Subsurface spectra from KGOSYSI Band1, Band2, Band3 0.73 0.26 2.96
Subsurface spectra from KGSYSI 0.64 0.30 2.59

MRL Subsurface spectra from KGOSYSI 0.74 0.25 3.04

Subsurface spectra from KGSYSI 0.60 0.32 2.45

TPIL: Topographic position index; SLH: Slope Height; VLD: Valley Depth; SAR: Surface Area; MRL: Multiple linear regression; GWR: Geographically weighted re-
gression; SYSI: Synthetic soil image; KGSYSI: SYSI generated by kriging estimates; KGOSYSI: SYSI generated by combining original SYSI and kriging estimates for

2

only the non-filled gaps; R3q;: Adjusted coefficient of determination at 0.05 significance; RMSE: Root mean square error; RPIQ: Ratio of performance to interquartile

range.

0.67 (RPIQ = 2.87), respectively (Table 3). These results are in agree-
ment with the correlations between reflectance and the Munsell color
system observed by Escadafal et al. (1989), Mathieu et al. (1998), and
Post et al. (1994). These authors correlated the Munsell color with sa-
tellite images, whereas Viscarra Rossel and Behrens (2010) correlated
laboratory spectra with the Munsell color. GWR presented the best
performance for hue prediction, being slightly lower than the MLR/
KGOSYSI2 combination for value and chroma (Table 3). These results
show that the correlation of these attributes with the spectral values is
relevant to prediction.

Hue, value, and chroma predictions achieved the best results by
using KGOSYSI (Table 3), while predictions of clay content, CEC, m%, V
%, and Al were better with KGSYSI (Tables 2 and 3). In this case (and
different from previous observations), the multitemporal variation of
reflectance for the visible bands (Band 1, Band 2, and Band 3) used in
the iron and color precision, is smaller than in the infrared bands. The
Kriging smoothing effect overestimated minimum locations and un-
derestimated maximum locations, influencing this distinction.

Several studies (Dewitte et al., 2012; Dobos et al., 2000; Dwivedi,
2001) have reported that spectral data obtained by onboard satellite
sensors can differentiate many pedological classes, although they only
detect the soil surface layer. Nanni et al. (2014) also demonstrated that
satellite images can be used to discriminate soil classes which is related
to subsurface patterns. Zeng et al. (2016) observed that surface in-
formation can be inferred from subsurface information. These reports
agree with the results of this study, i.e. that surface reflectance can be
used as a strategy for inferring the subsurface, with Rﬁdj above 0.50
(Tables 2 and 3). Quantification of soil attributes by the spectra gen-
erated in the laboratory is nothing new. Soriano-Disla et al. (2014) and
Nocita et al. (2015) have demonstrated this and Viscarra Rossel et al.
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(2016a, 2016b) conclude that some soil properties have a high asso-
ciation with laboratory spectra. Thus, the literature corroborates our
findings on the quantification of soil attributes, even though their stu-
dies were conducted using only laboratory spectra.

Remote sensing is now widely used. Indeed, only the top 3 cm of the
surface can be detected by these optical sensors. Pedotransfer functions
(McBratney et al., 2002) are defined as predictive tools based on certain
soil attribute patterns relative to another, allowing the transfer of soil
information from known to unknown locations. This concept has been
widely used to map soil attributes and classes (Behrens et al., 2010;
Finke, 2012; Hartemink and Minasny, 2014; Michéli et al., 2016). By
using the SPEDO function, we have demonstrated that it is possible to
use surface spectral information to predict subsurface spectra and,
following on from that, the function can be applied to map soil attri-
butes and classes.

4. Conclusion

Based on satellite surface spectral information, subsurface soil
properties were successfully estimated (i.e. clay content, hue and value)
with 0.61 < RZdj < 0.70, by using spectral pedotransfer functions
(SPEDO). The spectral reflectance of soil surfaces, obtained by satellite
sensors, correlated with the subsurface spectra, reaching Rﬁdj of 0.72.
This supported the spatial prediction of subsurface spectra based on the
surface patterns and mapping of soil attributes by digital soil mapping.
The results indicate the existence of a strong relationship between
surface soil characteristics (patterns) that allow the inference of sub-
surface features, with a certain margin of error. Overall, geographically
weighted regression provided better estimations of soil attributes than
the multivariate linear regression. Last but not least, we strongly
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believe that the SPEDO will open up new opportunities for obtaining
information about subsurface soils, based on satellite data, in order to
assist with digital soil mapping. Despite this important achievement,
the prediction of soil subsurface properties is still a task that requires
continuous research to aggregate other upcoming techniques.
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